• Title/Summary/Keyword: Heat exchange system

Search Result 331, Processing Time 0.024 seconds

Thermal Performance Analysis and Optimization of Two-dimensional Trombe Wall Solar System (2차원 축열벽형 태양열시스템의 열성능해석 및 최적화)

  • 이원근;유성연;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1609-1620
    • /
    • 1993
  • A Study on the trombe wall system, a kind of passive solar systems, has been performed numerically. The system is treated as a two-dimensional steady turbulent natural convection including constant heat source per unit area. The numerical code, "PHOENICS, " was employed to analyze this conduction-convection conjugated heat transfer. The general mode of the flow field was examined, and the exchange of mass between two recirculating flows is found to be the major mechanism of the heat transfer. It is shown that the performance is affected by the changes in the geometrical factors-the thickness of the wall, the width between the windowand the wall, and size of the vents. Further analysis has been performed to show the optimal geometry with regard to the last two factors.o factors.

A Study on the Temperature Characteristics of Main Coolant Pump for System-integrated Modular Advanced Reactor (SMART 원자로용 냉각재 순환펌프의 온도특성에 관한 연구)

  • Gu, Dae-Hyeon;Bang, Deok-Je;Gang, Do-Hyeon;Kim, Jong-In;Jo, Yun-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.320-326
    • /
    • 2000
  • The canned motor of 3-phase induction is used for main coolant pump(MCP). The type of motor is canned-motor that stator and rotor are welded by sealed can. So, cooling water flows in the air gap of the canned motor as an independent cycling cooling system from the air gap to yoke of the motor to prevent high temperature of stator can and to lubricate bearing. Heat exchange is occurred between cooling water in the air gap and cooling water from the exterior pump to prevent rising of temperature in the motor. I has to analyze the characteristics of can exactly because the loss and the heat in the can are very important to design MCP. Therefore, thermal analysis is studied considering the effect of eddy-current los induced in the can.

  • PDF

A Fundamental Study on the Nutrient Solution Cooling System Utilizing Ground Water (지하수를 이용한 양액냉각시스템 개발에 관한 기초연구)

  • 남상운;손정익;김문기
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • Experimental and theoretical analyses were carried out to investigate the heat exchange characteristics of the nutrient solution cooling system utilizing ground water. The material of heat exchanger used in the experiment was polyethylene and the cross-flow type was adapted in which nutrient solution was mixed and ground water unmixed. For the exchanger surface area of 0.33$m^2$ and flow rates of ground water of 1-6$\ell$/min, NTU(number of transfer units) and effectiveness of experimental heat exchanger were 0.1-0.45 and 10-35%, respectively. Therefore these results showed that the hydroponic greenhouse of 1,000$m^2$(300 pyong) with the ground water of 10$m^2$/day could cover about 55-70% of maximum cooling load in summer.

  • PDF

Analysis of Transient Heat Transfer Characteristics of a Receiver for a Dish Type Solar Thermal System by using CFD (CFD를 이용한 접시형 태양열 집열기의 Transient 열전달 성능 해석)

  • Oh, Sang-June;Lee, Ju-Han;Seo, Joo-Hyun;Lee, Jin-Gyu;Cho, Hyun-Seok;Seo, Tae-Beom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.167-170
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

Effects of Cladding and Antifreeze Solution on Cavitation Corrosion of AA3003 Tube of Heat Exchanger for Automobile

  • Young Ran Yoo;Seung Heon Choi;Hyunhak Cho;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.203-214
    • /
    • 2024
  • A heat exchanger is a device designed to transfer heat between two or more fluids. In a vehicle's thermal management system, Al heat exchangers play a critical role in controlling and managing heat for efficient and safe operation of the engine and other components. The fluid used to prevent heat exchangers from overheating the engine is mostly tap water. Heat exchange performance can be maintained at sub-zero temperatures using a solution mixed with antifreeze. Although the fluid flowing through the heat exchanger can reduce the temperature inside the engine, it also has various problems such as cavitation corrosion. Cavitation corrosion characteristics in tap water and corrosion characteristics were evaluated in this study when antifreeze was added for test specimens where AA4045 was cladded on the inner surface of AA3003 tubes of a fin-type heat exchanger. The cavitation corrosion resistance of AA3003 was found to be superior to that of AA4045 regardless of the test solution due to higher corrosion resistance and hardness of AA3003 than those of AA4045. The cavitation corrosion rate of Al alloys increased with the addition of antifreeze.

Analysis of Optimum Water Cooling Conditions and Heat Exchange of LED Lamps for Plant Growth (식물생장용 LED 램프의 적정 수냉조건 및 열교환량 분석)

  • Park, Jong-Ho;Lee, Jae-Su;Kim, Dong-Eok;Kim, Yong-Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.334-341
    • /
    • 2011
  • This study was conducted to compare the characteristics of heat dissipated from LED lamps with water cooling method and natural cooling method in a closed-type plant production system (CPPS) and to determine the optimum water temperature and flow rate for LED lamps with water cooling method. The experiments were performed in CPPS maintained at temperature of $24^{\circ}C$ and humidity of 70%. As compared to the LED lamps operated at water temperature of $22.5{\pm}1.2^{\circ}C$ and flow rate of $1,521{\pm}3.3\;mL{\cdot}min^{-1}$, air temperature under LED lamps with natural cooling was approximately increased by $1^{\circ}C$ and photosynthetic photon flux was decreased by $10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. PPF illuminated from LED lamps was affected by forward voltage varied by the surface temperature of LED lamps. Forward voltage of LED lamps was decreased with increasing surface temperature and then PPF was proportionately decreased. Five levels ($14^{\circ}C,\;17^{\circ}C,\;20^{\circ}C,\;23^{\circ}C,\;26^{\circ}C$) of water temperature and three levels ($500\;mL{\cdot}min^{-1}$, $1,000\;mL{\cdot}min^{-1}$, $1,500\;mL{\cdot}min^{-1}$) of flow rate were provided to analyze the change of surface temperature and heat exchange of LED lamps. Heat exchange was increased with decreasing water temperature and increasing flow rate. At flow rate of $1,000-1,500\;mL{\cdot}min^{-1}$ and water temperature of 22.0-$22.6^{\circ}C$, surface temperature of LED lamps can be approached to $24^{\circ}C$ that was almost same as air temperature in CPPS. The calorific value generated from LED lamps used in the study was estimated to be $103.0\;kJ{\cdot}h^{-1}$.

Thermal Management Study of PEMFC for Residential Power Generation (가정용 연료전지 시스템의 열관리 해석)

  • Yu, Sang-Seok;Lee, Young-Duk;Ahn, Kook-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2839-2844
    • /
    • 2008
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be cope with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. Typically, thermal management of vehicular PEMFC is to reject the heat from the PEMFC to the ambient air. Different from that, the thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, dynamic thermal management system is modeled to understand the response of the thermal management system during dynamic operation. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.

  • PDF

Dynamic thermal Design of a 1-ton Class Bio-Hydrogen Production System Simulator Using Industrial Waste Heat and by-Products (산업배열 및 부산물을 활용한 1톤급 바이오수소 생산 시뮬레이터 동적 열설계)

  • Kim, Hyejun;Kim, Seokyeon;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.259-268
    • /
    • 2017
  • This paper proposes a hydrogen-based social economy derived from fuel cells capable of replacing fossil fuels and resolving global warming, It thus provides an entry for developing economically feasible social configurations to make use of bio-hydrogen production systems. Bio-hydrogen production works from the principle that microorganisms decompose water in the process of converting CO to $CO_2$, thereby producing hydrogen. This study parts from an analysis of an existing 157-ton class NA1 bio-hydrogen reactor that identifies the state of feedstock and reactor conditions. Based on this analysis, we designed a 1-ton class bio-hydrogen reactor process simulator. We carried out thermal analyses of biological heat reactions, sensible heat, and heat radiation in order to calculate the thermal load of each system element. The reactor temperature changes were determined by modeling the feed mixing tank capacity, heat exchange, and heat storage tank. An analysis was carried out to confirm the condition of the feed mixing tank, heat exchanger, heat storage tank capacity as well as the operating conditions of the system so as to maintain the target reactor temperature.

ICT Fusion Type Plasma Waste Heat Ventilation System for Improvement of Indoor Air Quality (실내 공기질 개선을 위한 ICT 융복합형 플라즈마 폐열 환기 시스템)

  • Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1215-1220
    • /
    • 2019
  • Currently, each farm bears both the outbreak of foot-and-mouth disease and the damage caused by AI. In addition, complaints about odors in the livestock industry are constantly being recovered and are expected to occur in the future. The purpose of this study is to improve the indoor air quality of enclosed facilities such as barns, houses, pigsty, and etc. This paper develops low-temperature plasma waste heat ventilation system to be installed in ventilation unit location and standardizes heat exchange element, low-temperature plasma lamp, and ballast for enhanced air cleaning function. In addition, this study intends to develop a new control system so that the farmers can connect with existing weather systems, flow fans, and other facility equipment by incorporating ICT.

Performance of A Three-Stage Condensation Heat Pump

  • Lee, Yoon-Hak;Jung, Dong-Soo;Kim, Chong-Bo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.55-68
    • /
    • 1999
  • In this study, computer simulation programs were developed for single-stage, two-stage, and three-stage condensation heat pumps and their performance with CFC11, HCFC123, HCFC141b was examined under the same external conditions. The results showed that the coefficient of performance(COP) of an optimized 'non-split type' three-stage condensation heat pump is 25-42% higher than that of a conventional single-stage heat pump. The increase in COP, however, differed among the fluids tested. The improvement in COP is largely due to the decrease in average LMTDs in condensers, which results in the decrease in thermodynamic irreversibility in heat exchange process. For the three-stage heat pump, the highest COP is achieved when the total condenser area is evenly distributed among the three condensers. For the two-stage heat pump, however, the optimum distribution of the total condenser area varies with an individual working fluid. For the three-stage system, 'splitting the condenser cooling water'for the use of intermediate and high pressure subcoolers helps increase the COP further. When the individual cooling water entering the intermediate and high pressure subcoolers is roughly 10% of the total condenser cooling water, the maximum COP is achieved showing roughly an 11% increase in COP as compared to that of the 'non-split type' heat pump.

  • PDF