• Title/Summary/Keyword: Heat exchange efficiency

Search Result 161, Processing Time 0.023 seconds

Study on Heat Exchanger Efficiency of EGR Cooler with Dimpled Rectangular Tube Shape for Application of Diesel Vehicles (디젤 자동차용 딤플 사각 튜브형 EGR Cooler 의 열교환기 효율에 관한 연구)

  • Seo, Young-Ho;Heo, Seong-Chan;Ku, Tae-Wan;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.769-775
    • /
    • 2008
  • In this study, the investigations on the dimpled type Exhaust Gas Recirculation (EGR) cooler have been focused on the high heat exchanger efficiency. To overcome low heat exchanger efficiency of general EGR cooler, the dimpled type EGR cooler was developed. It was ensured the improvement of the performance of the dimpled type EGR cooler related to the heat exchange based on a series of the experiment. These results were caused by the increase of thermal surface area in accordance with the dimple's one. The estimation model of the heat exchanger efficiency using the Effectiveness-NTU method was also developed in order to verify the validity of experimental result. Also, the program for the estimation of the heat exchanger efficiency on the EGR cooler with regard to the dimpled tube shape was developed. Resultantly, it was confirmed that the dimpled type EGR cooler could be served better performance than the conventional one in view of the heat exchanger efficiency.

The maximum power condition of the Brayton cycle with heat exchange processes (熱交換 過程 을 考慮한 브레이튼 사이클 의 最大出力條件)

  • 정평석;차진걸;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.795-800
    • /
    • 1985
  • The ideal Brayton cycle has been analyzed with the heat exchange processes between the working fluid and the heat source and the sink while their heat capacity rates are constant. The power fo the cycle can be expressed in terms of a temperature of the cycle and the heat capacity rate of the working fluid. There exists an optimum power condition where the heat capacity rate of the working fluid has a value between those of the heat source and the heat sink, and the cycle efficiency is determined by the inlet temperatures of the heat source and the sink.

Study on Heat Exchanging Characteristics of Automobile Exhaust Heat Recirculation Device (자동차 배기열 재순환장치의 열교환 특성에 관한 연구)

  • Hong, Young-Jun;Choi, Doo-Seuk;Jung, Young-Chul;Kim, Jong-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4302-4307
    • /
    • 2011
  • Recently, various technologies for the fuel efficiency improvement are being developed. The purpose of this study is to evaluate the heat exchanging performance of a exhaust heat recirculation device and to propose a model with optimized performance. The device has been designed to warm up engine coolant as quickly as possible using wasted exhaust heat. To achieve these goals, heat transfer characteristics has been analyzed using CFD for the flow direction effect and in/out location effect of coolant. A method improving the effectiveness of heat exchange has been proposed. As a result, the highest efficiency in heat exchange was observed on condition that exhaust heat affects the coolant directly with a separate flow path between exhaust gas and coolant and that coolant flow rate is relatively low.

Boil-Off Gas Reliquefaction System for LNG Carriers with BOG-BOG Heat Exchange (BOG 내부 열교환을 이용한 LNG 선박용 Boil-Off Gas 재액화 시스템)

  • Lee, Yoon-Pyo;Shin, You-Hwan;Lee, Sang-Hoon;Kim, Kwang-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.444-451
    • /
    • 2009
  • The price increase of natural resources and the worldwide growth of LNG demand led to save the waste of Boil-Off Gas evaporating from cargo tanks of LNG carriers during navigation. As one of the efforts, a BOG reliquefaction system with BOG-to-BOG heat exchanging method was newly devised. This study was also discussed on the process details such as some features and advantages including comparisons with conventional BOG reliquefaction system, non BOG-BOG heat exchange type. The thermodynamic analysis for the system were also performed. Through the cycle simulation, the process efficiency of the BOG reliquefaction system BOG-BOG heat exchange was estimated to be increased up to 21%.

Performance Ratings According to Characteristics of Thermosyphon Solar Hot Water System (자연대류형 태양열온수기의 특성별 성능평가에 관한 연구)

  • Kang, Y.H.;Kwak, H.Y.;Yoo, C.G.;Yoon, H.G.;Kang, M.C.;Lee, D.G.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.9-17
    • /
    • 2000
  • To obtain thermal performance data, an experiment was performed with the two selected thermosyphon systems. The system parameters obtained by experimental data were used to perform TRNSYS simulation and verified TRNSYS model of thermosyphon solar hot water system. The thermosyphon solar hot water system was TYPE 145 which is modified from non-linear model. This model can describe heat exchange type and non-linear efficiency equation. It is possible to analyze the annual energy rate with efficiency equation and system specification. In this paper, we could compare the annual performance of the coil heat exchanger with that of the tank-in-tank heat exchanger. Under the same efficiency and parameter, heat exchange, drain, initial tank temperature, ratio of tank volume over collector area(V/Ac), regional annual performance rating were performed.

  • PDF

Numerical Investigations of Enhancement of a Convective Fin Efficiency by Convection-Radiation Gonjugate Heat Transfer (대류-복사 복합 열전달을 고려한 대류 핀효율의 향상에 관한 수치적 연구)

  • 이동렬;김호용;이재곤;박용국;김기대
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.146-154
    • /
    • 2001
  • In almost all real situations, there will be a radiant interchange between adjacent fins with the base surface as well as with the external environment. In the problem of this study, a rectangular fin is attached to a based. Our concern is whether the convective fin efficiency can be increased by the radiation heat exchanged between the fin and the base surface and how much. If the fin temperature toward the tip increased by the effect of radiation, the convective heat transfer increase due to the temperature difference between the ambient temperature and the surface temperature of the fin. If this true, the efficiency of the fin due to the radiation will increase. Attention is directed toward several parameters which have major roles on getting values of the fin efficiencies in several different values of parameters. Many different cases are, therefore, to be examined to have maximum fin efficiency by varying the values of each parameter.

  • PDF

Sensitivity Analysis on KS and JIS Standard for Heat Recovery Ventilator (KS, JIS 열교환 환기장치 실험규격의 민감도 분석)

  • Yee Jurng-Jae;Ihm Pyeong-Chan;Kim Hwan-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.998-1004
    • /
    • 2005
  • Recently natural ventilation rate is decreased due to the airtightness of apartment building. Therefore the use of heat recovery ventilator (HRV) has been greatly increased as an alternative method to supply fresh air and save energy in the building. In this research the experiment standard of HRV is compared between KS and JIS and the sensitivity analyses are experimented by both standards. Under cooling experiment condition indoor and outdoor wet-bulb temperature difference of JIS is 2 to 3 times higher than that of KS. It shows that the efficiency measurement of HRV by KS is expected to have greater sensitivity than by JIS and thus accurate measurement of web-bulb temperature is required. The experimental results provide that the efficiency of thermal exchange is resemblance to each others between KS and JIS. Under cooling experiment condition the efficiency of humidity exchange by KS presents higher than by JIS, however, under heating experiment condition the efficiency by KS shows lower than by JIS, reversely.

Study on Efficiency for Underground Heat Transfer of Metal Heat Exchanger (금속재질 열교환기의 지중 열교환 효율에 관한 연구)

  • Song, Jae-Yong;Kim, Ki-Joon;An, Sang-Gon;Kim, Jin-Sung;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.131-148
    • /
    • 2015
  • The purpose of this study is to analyze and compare the heat transfer efficiency of using copper pipe, stainless pipe and traditional PE pipe commonly used for geothermal heat exchanger, with aims at seeking improved methods. In addition, the varying efficiency of heat transfer from ground heat and groundwater heat was assessed and its applicability was discussed. Design parameters for empirical field study were derived by controlling flow rate, velocity and caliber of pipes of the heat exchanger after the thermal efficiency of the heat exchanger material was evaluated. The heat exchange efficiency and effective thermal conductivity were measured with changing pattern through field thermal efficiency and thermal response test. Experimental results show that the metal material showed higher heat transfer efficiency than the PE pipe. Although the heat transfer efficiency was not high with the increase of the pipe diameter in the flow rate, it was high with the increase of the pipe diameter in the velocity.

Effects of Pitch Length of Stack-type EGR Cooler on Heat Exchange Characteristics in a Diesel Engine (적층형 EGR Cooler의 Pitch 길이 변화가 열교환 특성에 미치는 영향)

  • Hwang, Se-Joon;Kim, Min-Chol;Jang, Sang-Hoon;Kim, Hyung-Man
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • An important goal in diesel engine research is the development of a means to reduce the emissions of nitrogen oxides (NOX). The use of a cooled exhaust gas recirculation (EGR) system is one of the most effective techniques currently available for reducing nitrogen oxides. Since Particular Matter (PM) fouling reduces the efficiency of an EGR cooler, a trade-off exists between the amount of NOX and PM emissions, especially at high engine loads. In the present study, engine dynamometer experiments have been performed to investigate the heat exchange characteristics of the stack-type EGR coolers with wave fin pitches of 3.6 and 4.6 mm. The results show that the heat exchange effectiveness is decreased as surface area decrease with pitch of 4.6 mm due to PM fouling. As surface area increase at pitch of 3.6 mm, super-cooling happens in the recirculated exhaust gas.

Attachment of the Air Heat Exchanger for COP Improvement in the Heat Pump (열펌프 성능향상을 위한 공기 열교환기 부착효과)

  • 노정근;송현갑;박용규
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.235-240
    • /
    • 2002
  • Performance of the heat pump with attaching an air heat exchanger was investigated in the heating condition when the air heat exchanger was worked in the ambient air temperature of -5 to 11$\^{C}$ and air flow rate of 542 to 747 ㎡/h. Performance tests for heating condition were conducted in an experimental room equipped with heat pump. The performance tests were performed in a ambient temperature of -4 ∼ 11$\^{C}$, and room temperature of 4∼22$\^{C}$ respectively. Measured data(temperature, capacity of heat transfer and consumption of electronic power) were analyzed to the efficiency of HEEVA(Heat Exchanger fur the Evaporator), overall heat transfer coefficient and COP of heat pump. The results of inlet temperature for evaporator increased that the temperature was 2 ∼6$\^{C}$, and inlet temperature for condenser decreased that the temperature was 3 ∼ 8$\^{C}$. The results of comparing efficiency of HEEVA for the ratio of heat exchange between hot air and cold air showed that efficiency were considered to 91% because of the ratio of 83∼98%. The results of comparing of COP for the heat pump increased that improvement COP was approximately 0.3∼7.5 than HEEVA had not been operated.