• Title/Summary/Keyword: Heat exchange area

Search Result 100, Processing Time 0.028 seconds

The Effect of Activated Nitrogen Species for Diffusion Rate during a Plasma Nitriding Process (플라즈마질화에서 발생기 질소와 질화 속도에 관한 연구)

  • Kim, Sang-Gweon;Kim, Sung-Wan;Brand, P.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.3
    • /
    • pp.150-155
    • /
    • 2010
  • Generally, plasma nitriding process has composed with a nitriding layer within glow discharge region occurred by energy exchange. The dissociations of nitrogen molecules are very difficult to make neutral atoms or ionic nitrogen species via glow discharge area. However, the captured electrons in which a double-folded screen with same potential cathode can stimulate and come out some single atoms or activated ionic species. It was showed an important thing that is called "hat is a dominant component in this nitriding process?" in plasma nitriding process and it can take an effective species for without compound layer. During a plasma nitriding process, it was able to estimate with analyzing and identification by optical emission spectroscopy (OES) study. And then we can make comparative studies on the nitrogen transfer with plasma nitriding and ATONA process using plasma diagnosis and metallurgical observation. From these observations, we can understand role of active species of nitrogen, like N, $N^+$, ${N_2}^+$, ${N_2}^*$ and $NH_x$-radical, in bulk plasma of each process. And the same time, during DC plasma nitriding and other processes, the species of FeN atom or any ionic nitride species were not detected by OES analyzing.

Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2184-2194
    • /
    • 2021
  • The Free-Piston Stirling engine (FPSE) is of interest for many research in aerospace due to its advantages of long operating life, higher efficiency, and zero maintenance. In this study, a 1-kW FPSE was proposed by analyzing the requirements of Space Reactor Power Systems (SRPS), of which performance was evaluated by developing a code through the Simple Analysis Method. The results of SAM showed that the critical parameters of FPSE could satisfy the designed requirements. The heater of the FPSE was designed with the copper rectangular fins to enhance heat transfer, and the parametric study of the heater was performed with Computational Fluid Dynamics (CFD) software STAR-CCM+. The Performance Evaluation Criteria (PEC) was used to evaluate the heat transfer enhancement of the fins in the heater. The numerical results of the CFD program showed that pressure drop and Nusselt number ratio had a linear growth with the height of fins, and PEC number decreased as the height of fins increased, and the optimum height of the fin was set as 4 mm according to the minimum heat exchange surface area. This paper can provide theoretical supports for the design and numerical analysis of an FPSE for SRPSs.

Measures and Proposal for Korean Solar Water Heating System (한국형 태양열 온수급탕 시스템의 대책과 제안)

  • Kim, Sung-Soo;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.631-636
    • /
    • 2008
  • Solar thermal systems are recently refocused by higher oil prices, but did not completely restore the people's confidence owing to the past bad systems. Several types of solar water heating systems were analyzed in characteristics and some proper systems were proposed under Korean climates and system scale. As a small system, natural circulation system should be installed only in a southern region of Korea, with a freeze protection valve instead of heating coil for freeze protection. In most area of Korea, the forced circulation type with a heat exchange coil inside a thermal storage tank or with a spiral-jacketed storage tank, proposed and verified by the authors, has a merit of stable performance and freeze protection.

An Analysis of Exchange Rate Volatility Spillovers (환율변동성 전이효과 분석)

  • Lee, Sa-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.426-431
    • /
    • 2018
  • This study examines exchange rate volatility spillovers that affect the exchange rate volatility of Korean currency. For this study, the Japanese yen, British pound, Euro, and Canadian dollar are used as the currencies of developed countries, and the Thai baht, Indonesian rupiah, Singapore dollar, and Australian dollar are used as the currencies of the areas near Korea. The GARCH(1.1) model is employed for weekly data covering the period from January 2009 to December 2017. This study finds that the volatility spillovers from the Canadian dollar, Singapore dollar, and Australian dollar to the Korean won are significant, while the volatility spillovers from the Japanese yen, British pound, Euro, Thai baht, and Indonesian rupiah to the Korean won are insignificant. In terms of the economic system and structure, Japan, Britain, and European countries are at a higher level than Korea, while Thailand and Indonesia are at a lower level than Korea. Canada, Singapore, and Australia are almost at the same level as Korea. Therefore, these results appear to be derived from the phenomenon of exchange rate spillovers among countries with a similar economic system and structures, and contradict the literature, which has argued that exchange rates volatility spillovers occur among countries that are in the same area geographically.

Thermal and Mineralogical Characterization of Ca-Montmorillonite from Gampo Area (감포지역(甘浦地域) Ca-몬모릴로나이트의 열적(熱的) 및 광물학적(鑛物學的) 특성(特性))

  • Moon, Hi-Soo;Choi, Sun Kyung;Kim, Moon Young
    • Economic and Environmental Geology
    • /
    • v.21 no.2
    • /
    • pp.175-184
    • /
    • 1988
  • Ten under 2 micron size fractions of the montmorillonite from Yongdongri area, Gyeongsangbug-Do were studied using X-ray powder diffraction, cation exchange measurement, differential thermal analysis, thermogravimetric analysis, differential thermal scanning calorimetry and chemical analysis. Montmorillonites occurring at same deposit show limited variation in chemical composition whereas in thermal properties they do not. Their dehydroxylation endothermic peaks are "abnormal" type with a small range of variation of peak temperature reflecting tetrahedral substitution of Al for Si. Data from DSC show that divalent-cation saturated montmorillonite has relatively a higher endothermic heat capacity than monovalent-cation saturated montmorillonite, indicating that cations with higher electronegativity hold more water molecules.

  • PDF

Effect of Ventilation on Heat Stress in the System of Short-Sleeve T-Shirt-Combat Uniform-Chemical, Biological, and Radioactive Protective Clothing (반팔 내의-전투복-화생방보호의 시스템에서 환기가 열적 스트레스에 미치는 영향)

  • Lee, Okkyung;Eom, Rani;Jung, Heesoo;Cho, Kyeong Min;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.5
    • /
    • pp.836-847
    • /
    • 2022
  • This study establishes basic data for the development of a new Chemical, Biological, and Radioactive (CBR) protective clothing by selecting the ventilation position to optimize thermal comfort on the basis of the opening and closing of each part. Participants were eight men in their 20s who had previously worn CBR protective clothing. After vigorous exercise and perspiration, the microclimate of the clothing and skin temperature was measured. Results revealed that when the ventilation zipper was opened after exercising, the skin and clothing microclimate temperatures, which had increased during the exercise, decreased in the chest and shoulder blade regions. The clothing microclimate humidity decreased in the chest area. The change was greatest in the chest region; the skin temperature decreased by 0.2℃, the clothing microclimate temperature by 2.7℃, and the clothing microclimate humidity by 3.2%RH through ventilation. Thus, the opening that allows the exchange of accumulated heat and moisture while wearing the CBR protective clothing is efficient.

Ultrathin Carbon Shell-Coated Intermetallic Alloy Nanoparticles for Oxygen Reduction Reaction in Fuel Cells (초박형 카본쉘이 코팅된 금속간 화합물 합금 나노 입자로 구성된 연료전지용 산소 환원 반응 촉매)

  • Hyeonwoo Choi;Keonwoo Ko;Yoonseong Choi;Jiho Min;Yunjin Kim;Sourabh Sunil Chougule;Khikmatulla Davletbaev;Chavan Abhishek Arjun;Beomjun Pak;Namgee Jung
    • Korean Journal of Materials Research
    • /
    • v.34 no.4
    • /
    • pp.208-214
    • /
    • 2024
  • To fabricate intermetallic nanoparticles with high oxygen reduction reaction activity, a high-temperature heat treatment of 700 to 1,000 ℃ is required. This heat treatment provides energy sufficient to induce an atomic rearrangement inside the alloy nanoparticles, increasing the mobility of particles, making them structurally unstable and causing a sintering phenomenon where they agglomerate together naturally. These problems cannot be avoided using a typical heat treatment process that only controls the gas atmosphere and temperature. In this study, as a strategy to overcome the limitations of the existing heat treatment process for the fabrication of intermetallic nanoparticles, we propose an interesting approach, to design a catalyst material structure for heat treatment rather than the process itself. In particular, we introduce a technology that first creates an intermetallic compound structure through a primary high-temperature heat treatment using random alloy particles coated with a carbon shell, and then establishes catalytic active sites by etching the carbon shell using a secondary heat treatment process. By using a carbon shell as a template, nanoparticles with an intermetallic structure can be kept very small while effectively controlling the catalytically active area, thereby creating an optimal alloy catalyst structure for fuel cells.

Characteristics of Ti-SPAC as Fluidizing Phase Photocatalyst (Ti-구형활성탄의 유동상 광촉매 특성 평가)

  • Lee, Joon-Jae;Suh, Jeong-Kwon;Hong, Ji-Sook;Park, Jin-Won;Lee, Jung-Min
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.375-381
    • /
    • 2006
  • In this sturdy, spherical activated carbon(SPAC) contained $TiO_2$ was made by ion-exchanged treatment and heat treatment for applying fluidizing bed system. The ion-exchange resin was treated by $TiCl_3$ aqueous solution. The treated resin and raw resin were heat-treated under nitrogen condition to convert into Ti-SPAC. During the heat-treatment, burn-off weight amounts and the element were measured by means of TGA and TGA/MS, individually. The physicochemical properties of Ti-SPAC was characterized by means of XRD, SEM, EDS, BET, EPMA, ESR, intensity and titanium content. The Ti-SPAC had spherical shape with diameter size about $350{\mu}m{\sim}400{\mu}m$ and $617m^2/g$ specific surface area. Structure of $TiO_2$ in Ti-SPAC was anatase and rutile form. Also, $TiO_2$ on SPAC were found that the $TiO_2$ were uniformly distributed through EPMA analysis. Moreover, the Ti-SPAC showed indirect photocatalyst activity estimation through ESR analysis, characteristics of photocatalyst potentially. Over all results, Ti-SPAC was used in fluidizing bed UV/photocatalyst system to remove HA(Humic Acid). That results were HA removal efficiency was about 70% and Ti-SPAC intensity was preserved during reaction. Ti-SPAC showed practical possibility as photocatalyst in fluidizing bed system.

Ventilation and Comfort Sensation by Slit Positions of Running Wear Jackets (러닝웨어 재킷의 슬릿 위치가 통기성과 착용감에 미치는 영향)

  • Lim, Ji-Hye;Roh, Eui-Kyung;Yoo, Hwa-Sook;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.11
    • /
    • pp.1794-1805
    • /
    • 2009
  • This study investigates the influence of slit positions on the microclimate temperature/humidity of garments. To design the slits, a market survey was performed to indicate the method to apply the slits, in addition to a literature survey about muscles and body surface variation through body movements. Based on the survey, three positions of slits were selected, shoulder slit, lowback slit, and midback slit, a slit width of 1cm and length to 30cm was used. The results showed that microclimate temperatures/humidity on the back according to the slit positions were in the order of, lowback, midback, and the shoulder. The lowback slit showed the highest effect on the temperature/humidity of a front trunk. Lowback slits affected on localized areas of the glutaeus maximus, erector spinae, and latissimus dorsi. Midback slits affected the back muscle and deltoid. Shoulder slits showed a more significant effect on the localized area of the deltoid versus other localized areas. In the subjective sensations, the lowback slit was cooler, dryer, and more comfortable than the other slits. For the subjective sensations by fabric characteristics, the slit positions correlated at |r|${\geq}.8$ and were significant at p<.001 The results show that the lowback slit has a superior air exchange effect and thermoregulation qualities.

Numerical Simulations for Optimal Utilization of Geothermal Energy under Groundwater-bearing Conditions (지하수 부존지역에서 최적 지열에너지 활용방식 수치 모의)

  • Kim, Jin-Sung;Cha, Jang-Hwan;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.487-499
    • /
    • 2014
  • While the vertical open type of heat exchanger is more effective in areas of abundant groundwater, and is becoming more widely used, the heat exchanger most commonly used in geothermal heating and cooling systems in Korea is the vertical closed loop type. In this study, we performed numerical simulations of the optimal utilization of geothermal energy based on the hydrogeological and thermal properties to evaluate the efficiency of the vertical open type in areas of abundant groundwater supply. The first simulation indicated that the vertical open type using groundwater directly is more efficient than the vertical closed loop type in areas of abundant groundwater. Furthermore, a doublet system with separated injection and extraction wells was more efficient because the temperature difference (${\Delta}$) between the injection and extraction water generated by heat exchange with the ground is large. In the second simulation, we performed additional numerical simulations of the optimal utilization of geothermal energy that incorporated heat transfer, distance, flow rate, and groundwater hydraulic gradient targeting a single well, SCW (standing column well), and doublet. We present a flow diagram that can be used to select the optimal type of heat exchanger based on these simulation results. The results of this study indicate that it is necessary to examine the adequacy of the geothermal energy utilization system based on the hydrogeological and thermal properties of the area concerned, and also on a review of the COP (coefficient of performance) of the geothermal heating and cooling system.