• Title/Summary/Keyword: Heat exchange area

Search Result 100, Processing Time 0.025 seconds

Eruptive mechanisms and processes at Udo tuff cone, Udo Island, Korea (우도응회과의 분출기기구와 분출과정)

  • Hwang, Sang-Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.91-103
    • /
    • 1992
  • Eruptive mechanisms and processes at Udo tuff cone can be inferred from indicative characters of products, bedforms and lithofacies, and ring faults. In terms of bedforms and lithofa-cies in particular, massive lapilli tuff beds and chaotic lapilli tuff beds are derived from subaerial falls of aggregated tephra of wet tephra finger jets, occurring dominantly at the lower sequences of proximal part at the tuff cone. Crudely stratified lapilli tuff are derived from subaerial falls of slightly aggregated tephra of less wet tephra finger jets, whereas reversely graded lapilli tuff beds are from slightly disaggregated subaerial falls of continuous uprush. Both beds frequently occur in the middle sequences at proximal and near medial part of the tuff cone. Block and lapilli tephra lenses, ash-coated lapilli tephra beds(lenses) and thin-bedded tuff beds are derived from extremely disaggregated subaerial falls of dry tephra in the continuous uprush, frequently occurring at the upper sequences of medial part at the tuff cone. Udo tuff cone is a basaltic volcano emergent through the sea water surface while water could flood across or into the vent area. Emergence of the tuff cone was from the type-Surtseyan eruption characterized by earlier tephra finger jets and later continuous uprush columns of tephra with copious volumes of steam. Explosions began when boiling of wter produced a bubble column reducing the hydrostatic pres-sure, allowing exsolution of gases from the magma. This expansion of magma into a vesiculating froth fragmented the magma and permitted mixing of magma and water so that a more vigorous generation of steam could proceed. Tephra finger jetting explosions continued to build the crater rims, then remove water from the vent that their deposits flowed like slsurries until the continuous uprush explosion ensued. Continuous uprush explosions were associated with most rapid accumula-tion of tephra. The increasing volume rate led to partial removal of water from the vent area by the newly tephra ring so that more vigorous activity could be attended by a reducing water supply. This might restrain surplus of cold water entering the vent and thus enhance the vigour of the eruption by allowing optimal heat exchange. Eventually the crater became so deep and unsuported that piecemeal sliding, or massive subsidence on indipping ring faults, filled and closed the vent, and the cycle of explosions and collapse began anew.

  • PDF

Impacts of Land Surface Boundary Conditions on the Short-range weather Forecast of UM During Summer Season Over East-Asia (지면경계조건이 UM을 이용한 동아시아 여름철 단기예보에 미치는 영향)

  • Kang, Jeon-Ho;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.415-427
    • /
    • 2011
  • In this study, the impacts of land surface conditions, land cover (LC) map and leaf area index (LAI), on the short-range weather forecast over the East-Asian region were examined using Unified Model (UM) coupled with the MOSES 2.2 (Met-Office Surface Exchange Scheme). Four types of experiments were performed at 12-km horizontal resolution with 38 vertical layers for two months, July and August 2009 through consecutive reruns of 72-hour every 12 hours, 00 and 12 UTC. The control experiment (CTRL) uses the original IGBP (International Geosphere-Biosphere Programme) LC map and old MODIS (MODerate resolution Imaging Spectroradiometer) LAI, the new LAI experiment (NLAI) uses improved monthly MODIS LAI. The new LC experiment (NLCE) uses KLC_v2 (Kongju National Univ. land cover), and the new land surface experiment (NLSE) uses KLC_v2 and new LAI. The reduced albedo and increased roughness length over southern part of China caused by the increased broadleaf fraction resulted in increase of land surface temperature (LST), air temperature, and sensible heat flux (SHF). Whereas, the LST and SHF over south-eastern part of Russia is decreased by the decreased needleleaf fraction and increased albedo. The changed wind speed induced by the LC and LAI changes also contribute the LST distribution through the change of vertical mixing and advection. The improvement of LC and LAI data clearly reduced the systematic underestimation of air temperature over South Korea. Whereas, the impacts of LC and LAI conditions on the simulation skills of precipitation are not systematic. In general, the impacts of LC changes on the short range forecast are more significant than that of LAI changes.

Performance Enhancement of Solar-Driven Steam Generator by Local Wettability Control (태양열 활용 증발기의 성능 향상을 위한 국소적 젖음성 제어에 관한 실험적 연구)

  • Choi, Jinwook;Seo, Yongwon;Mo, Hyeong-Uk;Kim, Seolha
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.255-259
    • /
    • 2022
  • Solar membrane steam generation is a very promising technology that can harvest purified water from seawater or wastewater during the current danger of running out of pure water. However, solar Membrane steam generation had direct contact with water, making it difficult to increase the efficient amount of evaporation. Here, we propose solar membrane steam generator composed of polydimethylsiloxane (PDMS) and graphene oxide (GO) and improved evaporation through wettability control in part throughout the water-absorbing membrane. Wettability control has shown significant improvements in thermal localization and temperature rise in the area of heat exchange with sunlight. The evaporator has an evaporation rate of 1.54 kg m-2 h-1 under 1 sun irradiation. The results showed that Solar membrane steam evaporation can effectively harvest pure water through an increase in evaporation.

The Clay Mineralogy of some Low Productive Paddy Soils In Kyonggi-Do (경기도(京畿道) 저위생산답(低位生産畓)의 점토광물(粘土鑛物)에 관(關)한 연구(硏究))

  • Shim, Sang Chil;Kim, Tai Soon;Lee, Hyung Koo;Song, Ki Joon;Valencia, I.G.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.127-135
    • /
    • 1974
  • The samples were taken from the following localities previously classified as "Akiochi" area: Yangpyung, Puchun, and Pyungtaik, all of Kyonggi-do province. Five soil profiles were described in the field, and taken to the laboratory for physical and chemical analysis and mineralogical analysis by X-ray diffraction. The predominant clay minerals consist mainly of illite, vermiculite, chlorites and intergrade with vermiculite, and kaolinite. Illite or mica was found present in all samples and in all horizons. This was identified by the 9.83 to $10{\AA}$ (0.01) and $3.32{\AA}$ (003) basal reflections, Interhorizontal variations in mineral content and crystallinity are illustrated in their respective Xray diffractogram. Comparing the peak intensity, of the $14{\AA}$, $10{\AA}$ and $7{\AA}$ indicated the degree of weathering from the surface to the lower horizons. In general, the weathering of illite on the surface produced less pronounced $10{\AA}$ and $14{\AA}$ peak as compared to the lower horizons. The same may be said with kaolinite. On K-saturation, the $14{\AA}$ peak broadening on the low angle side was observed. This is interpreted to be due to chlorization. Heat treament from $100^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$, and $800^{\circ}C$. caused significant changes in the different diffractograms. Heating caused collasped of the $14{\AA}$ to $10{\AA}$ and the appearance of scattered peaks between $10-14{\AA}$. This is interpreted to the presence of vermiculite chlorite intergradient. The complete collapse of the $14{\AA}$ at $800^{\circ}C$ to $10{\AA}$ with increased intensity was attributed to the preservce of vermiculite. The principal difference among the clay minerals in each horizon is the concomitant increase and decrease in intensity with depth of the $14{\AA}$, $10{\AA}$ and $7{\AA}$ diffraction spacings. Apparently the weathering of illite ($10{\AA}$) is resulting in the formation of vermiculite ($14{\AA}$) and the interstratified material being an intermediate stage and the beginning of the formation of vermiculite. Some broadening- in the 17 to $18{\AA}$ was observed in Puchun-1 Pyungtaik-1 and Pyungtaik-2 specially so in the lower horizon in the Ca or Mg-saturated sample. Heated treatment tend to shift this peak to $14{\AA}$ indicating the presence of regular layering of the interstratified complex. The high amount of extractable aluminum and iron coupled with low exchange capacity indicate that iron and aluminum plays an important role in the weathering of these soils and is responsible to the low exchange capacity, high acidity and high phosphate absorptive capacity. The results presented substantiated the weathering sequence of Jackson in that mica ${\rightarrow}$ vermiculite ${\rightarrow}$ chloritezed vermiculite ${\rightarrow}$ kaolinite.

  • PDF

A numerical study on the dispersion of the Yangtze River water in the Yellow and East China Seas

  • Park, Tea-Wook;Oh, Im-Sang
    • Journal of the korean society of oceanography
    • /
    • v.39 no.2
    • /
    • pp.119-135
    • /
    • 2004
  • A three-dimensional numerical model using POM (the Princeton Ocean Model) is established in order to understand the dispersion processes of the Yangtze River water in the Yellow and East China Seas. The circulation experiments for the seas are conducted first, and then on the bases of the results the dispersion experiments for the river water are executed. For the experiments, we focus on the tide effects and wind effects on the processes. Four cases of systematic experiments are conducted. They comprise the followings: a reference case with no tide and no wind, of tide only, of wind only, and of both tide and wind. Throughout this study, monthly mean values are used for the Kuroshio Current input in the southern boundary of the model domain, for the transport through the Korea Strait, for the river discharge, for the sea surface wind, and for the heat exchange rate across the air-sea interface. From the experiments, we obtained the following results. The circulation of the seas in winter is dependent on the very strong monsoon wind as several previous studies reported. The wintertime dispersion of the Yangtze River water follows the circulation pattern flowing southward along the east coast of China due to the strong monsoon wind. Some observed salinity distributions support these calculation results. In summertime, generally, low-salinity water from the river tends to spread southward and eastward as a result of energetic vertical mixing processes due to the strong tidal current, and to spread more eastward due to the southerly wind. The tide effect for the circulation and dispersion of the river water near the river mouth is a dominant factor, but the southerly wind is still also a considerable factor. Due to both effects, two major flow directions appear near the river mouth. One of them is a northern branch flow in the northeast area of the river mouth moving eastward mainly due to the weakened southerly wind. The other is a southern branch flow directed toward the southeastern area off the river mouth mostly caused by tide and wind effects. In this case, however, the tide effect is more dominant than the wind effect. The distribution of the low salinity water follows the circulation pattern fairly well.

Design of Energy Model of Greenhouse Including Plant and Estimation of Heating and Cooling Loads for a Multi-Span Plastic-Film Greenhouse by Building Energy Simulation (건물에너지시뮬레이션을 활용한 연동형 온실 및 작물에너지모델 설계 및 이의 냉·난방부하 산정)

  • Lee, Seung-No;Park, Se-Jun;Lee, In-Bok;Ha, Tae-Hwan;Kwon, Kyeong-Seok;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • The importance of energy saving technology for managing greenhouse was recently highlighted. For practical use of energy in greenhouse, it is necessary to simulate energy flow precisely and estimate heating/cooling loads of greenhouse. So the main purpose of this study was to develope and to validate greenhouse energy model and to estimate annual/maximum energy loads using Building Energy Simulation (BES). Field experiments were carried out in a multi-span plastic-film greenhouse in Jeju Island ($33.2^{\circ}N$, $126.3^{\circ}E$) for 2 months. To develop energy model of the greenhouse, a set of sensors was used to measure the greenhouse microclimate such as air temperature, humidity, leaf temperature, solar radiation, carbon dioxide concentration and so on. Moreover, characteristic length of plant leaf, leaf area index and diffuse non-interceptance were utilized to calculate sensible and latent heat exchange of plant. The internal temperature of greenhouse was compared to validate the greenhouse energy model. Developed model provided a good estimation for the internal temperature throughout the experiments period (coefficients of determination > 0.85, index of agreement > 0.92). After the model validation, we used last 10 years weather data to calculate energy loads of greenhouse according to growth stage of greenhouse crop. The tendency of heating/cooling loads change was depends on external weather condition and optimal temperature for growing crops at each stage. In addition, maximum heating/cooling loads of reference greenhouse were estimated to 644,014 and $756,456kJ{\cdot}hr^{-1}$, respectively.

The effect of grid number and the location and size of the fire source on the critical velocity in a road tunnel fire (도로터널 임계풍속 산정에 격자개수 및 화원의 크기와 위치가 미치는 영향)

  • Lee, Seung-Chul;Kim, Sang-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.183-195
    • /
    • 2012
  • This study conducted comparative analysis to estimate critical velocity in tunnel fire under variation of grid number and the location and size of the fire source using three-dimensional computational fluid dynamics. In the target tunnel, by one-dimensional way, the calculated critical velocity in the tunnel, 2.22 m/s was estimated, if appling hydraulic diameter, instead of the tunnel height. According to six numerical analysis, each grid number has different position, temperature, and CO concentration of back-layering. In the case of the subject, the case 1 with 0.84 million grid was found to be the most ideal. According to the location and size of the fire source, after three cases for three-dimensional numerical analysis was performed, it is resulted that the location and size of the fire source affect the critical velocity, because air velocity distribution, temperature distribution and CO concentration distribution showed different each case. This is due to the difference of heat exchange area and locations. Therefore, it is necessary to decide appropriate grid number, and the location and size of the fire source for processing techniques through comparison with actual experiment results and three-dimensional analysis.

A study on the origination and transmission of Koh(袴) in Northeast Asia-from the 4th century to 7th century (동북아세아(東北亞細亞) 고(袴)의 발생(發生) 및 전파(傳播)에 관(關)한 연구(硏究) - $4{\sim}7$세기(世紀) 중심으로 -)

  • Park, Kyung-Ja;Lee, Jean-Kyung
    • Journal of the Korean Society of Costume
    • /
    • v.15
    • /
    • pp.177-194
    • /
    • 1990
  • Koh(袴) was a type of dress worn on the lower part of the body which was commonly used in the Northeast Asia. It was originally used by the Northern race for the need of nomadism or hunting. The origin of the Koh which appeared in the area would be found from the trousers of the Huns who influenced in the Northeast Asia, and became in the part of the Scythian culture. The Scythians are the nomadizing race inhabited in the Northern Caucasas on the wast of the Black Sea and influenced on the inland Eurasian steppe as the first typical horse-riding race. The objectives of Koh which had been worn in the Scythian, Mongolia, Korea as well as Japan as a part of Dongho dress and ornaments and to contemplate the transmission process by cultural exchange among different races for the period from 4th century to 7th century. 1. The Origination of the Koh The Koh was originated by the environmental factor to protect the cold in the North but also from the heat in the South, and was changed and developed as gradually satisfying to the needs of the times. In the Northeast Asia the Koh was in the class of the Northern Chinese garment, and was used widely by the horse riding Scythians who moved widely from the Eurasian inland to Japan. The oldest original which could reflect the type of the Northern clothes was a pair of trousers discovered in the Huns remains of Noin Ula. This showed the exact form of hunting clothes and had a similar form with the Korean female tro-users. Since the same form of trousers drawn on the wall painting of which was excavated 4-5th century ancient Koguryo(高句麗) tomb was the same form the trousers of Noin Ula seemed to be the original form of Koh in the Northeast Asia. 2. The Chinese Trousers It was the time of the King Mooryung(武靈王) in the Cho(趙) Dynasty B.C. 3th century that the trousers used regularly in China. However, the Koh had been used as undergarment which functioned for the protection of the cold not the horseriding garment. The trousers seemed to be not very obviously shown off since the Poh (袍) was long, but mainly used by the people from lower class. As people learned the adapted the trousers. It was essential for the times of war and quarrel. The king himself started wearing the Koh. The Chinese trousers were influenced by the Huns, the Northern clothes of the Scythian culture, and similar to the Korean clothes. 3. The Korean Trousers Korean was a race bared from the Eastern foreign group. It was obvious that the clothes was Baji-Jeogori(바지 저고리), the garment of the Northern people. This had the same form of the Scythian dress and ornaments which was excavated from the Mongolian Noin Ula. The Scythian dress and ornaments were influenced from the Ancient West Asia Empire and transmitted to the Northeast Koguryu by the horseriding Scythian. The trousers were kept in the traditional style by the common people in Korea were transmitted to Japan which were for behind in cultural aspect, as well as got used to the Chinese as the efficient clothes though active cultural exchange. 4. The Japanese Trousers The ancient Japanese clothes were influenced by the Southern factor but not the form of the Koh. As the Korean people group was moving towards Japan and conquer the Japanese in the 4-5th century, however, North Altaic culture was formed and at the same time the clothes were also developed. The most influenced clothes at this time were those of Baekge(百濟) and the trousers form called Euigon became the main form. Because of the climatic regional factor, it was tied not at the ankle but under the knee. From the view the ancient Japanese clothes disappeard about that time, it could be due to the conquest of the culturally superior race but not the transmission of the culture. In the latest 7th century both the Chinese and Japanese dress forms were present, but the Dongho(東胡) dress and its ornament from Korea was still the basic of the Japanese dress form.

  • PDF

Analysis of Misconceptions on Oceanic Front and Fishing Ground in Secondary-School Science and Earth Science Textbooks (중등학교 과학 및 지구과학 교과서 조경 수역 및 어장에 관한 오개념 분석)

  • Park, Kyung-Ae;Lee, Jae Yon;Kang, Chang-Keun;Kim, Chang-Sin
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.504-519
    • /
    • 2020
  • Oceanic fronts, which are areas where sea water with different properties meet in the ocean, play an important role in controlling weather and climate change through air-sea interactions and marine dynamics such as heat and momentum exchange and processes by which properties of sea water are mixed. Such oceanic fronts have long been described in secondary school textbooks with the term 'Jokyung water zone (JWC hereafter) or oceanic front', meaning areas where the different currents met, and were related to fishing grounds in the East Sea. However, higher education materials and marine scientists have not used this term for the past few decades; therefore, the appropriateness of the term needs to be analyzed to remove any misconceptions presented. This study analyzed 11 secondary school textbooks (5 middle school textbooks and 6 high school textbooks) based on the revised 2015 curriculum. A survey of 30 secondary school science teachers was also conducted to analyze their awareness of the problems. An analysis of the textbook contents related to the JWC and fishing grounds found several errors and misconceptions that did not correspond with scientific facts. Although the textbooks mainly uses the concept of the JWC to represent the meeting of cold and warm currents, it would be reasonable to replace it with the more comprehensive term 'oceanic front', which would indicate an area where different properties of sea water-such as its temperature, salinity, density, and velocity-interact. In the textbooks, seasonal changes in the fishing grounds are linked to seasonal changes in the North Korean Cold Current (NKCC), which moves southwards in winter and northwards in summer; this is the complete opposite of previous scientific knowledge, which describes it strengthening in summer. Fishing grounds are not limited to narrow coastal zones; they are widespread throughout the East Sea. The results of the survey of teachers demonstrated that this misconception has persisted for decades. This study emphasized the importance of using scientific knowledge to correct misconceptions related to the JWC, fishing grounds, and the NKCC and addressed the importance of transferring procedures to the curriculum. It is expected that the conclusions of this study will have an important role on textbook revision and teacher education in the future.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF