• Title/Summary/Keyword: Heat dispersion

Search Result 280, Processing Time 0.024 seconds

A Study on the Characteristics of Pressure Distribution for Heat Exchanger Types of Domestic Gas Boiler (가정용 가스보일러 열교환기 유형에 따른 압력분포특성에 관한 연구)

  • 최경석;오율권;차경옥
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.22-28
    • /
    • 2001
  • Heat transfer and pressure distribution for heat exchanger type of domestic gas boiler are different from shape, pitch, thickness of fin and array of pipe respectively. In order to measure the pressure distribution across the heat exchanger, a suction type wind tunnel was constructed and velocity distribution was measured for pilot tube(4 point) of rack type. The experiments were performed for 5 different air flow mass, rpm=3,6,9,12,15 and transverse axis of heat exchanger(x-length) is 5cm respectively. Results showed that above 9.5m/s, pressure distribution dispersion for wet type of heat exchanger is on the increase and above 5.5m/s, pressure distribution dispersion for dry type of heat exchanger is on the increase. Also, pressure distribution dispersion by comparing two different types heat exchanger, dry type of heat exchanger showed a higher augmentation than wet type of heat exchanger.

  • PDF

Dispersion Behavior and Size Analysis of Thermally Purified High Pressure-high Temperature Synthesized Nanodiamond Particles

  • Kwon, Hansang;Park, Jehong;Leparoux, Marc
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.216-222
    • /
    • 2017
  • Synthesized monocrystalline nanodiamond (nD) particles are heat-treated at various temperatures to produce highly structured diamond crystals. The heat-treated nDs show different weight loss ratios during thermogravimetric analysis. The crystallinities of the heat-treated nDs are analyzed using Raman spectroscopy. The average particle sizes of the heat-treated nDs are measured by a dynamic light scattering (DLS) system and direct imaging observation methods. Moreover, individual dispersion behaviors of the heat-treated nD particles are investigated based on ultrasonic dispersion methods. The average particle sizes of the dispersed nDs according to the two different measurement methods show very similar size distributions. Thus, it is possible to produce highly crystallized nD powder particles by a heat-treatment process, and the nD particles are relatively easy to disperse individually without any dispersant. The heat-treated nDs can lead to potential applications such as in nanocomposites, quantum dots, and biomedical materials.

Heat Energy Diffusion Analysis in the Gas Sensor Body with the Variation of Drain-Source Electrode Distance (드레인-소스 전극 간극의 변화에 따른 Gas Sensor의 열에너지 확산 해석)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.589-595
    • /
    • 2017
  • MOS-FET structured gas sensors were manufactured using MWCNTs for application as NOx gas sensors. As the gas sensors need to be heated to facilitate desorption of the gas molecules, heat dispersion plays a key role in boosting the degree of uniformity of molecular desorption. We report the desorption of gas molecules from the sensor at $150^{\circ}C$ for different sensor electrode gaps (30, 60, and $90{\mu}m$). The COMSOL analysis program was used to verify the process of heat dispersion. For heat analysis, structure of FET gas sensor modeling was proceeded. In addition, a property value of the material was used for two-dimensional modeling. To ascertain the degree of heat dispersion by FEM, the governing equations were presented as partial differential equations. The heat analysis revealed that although a large electrode gap is advantageous for effective gas adsorption, consideration of the heat dispersion gradient indicated that the optimal electrode gap for the sensor is $60{\mu}m$.

Impact of Phonon Dispersion on Thermal Conductivity Model (포논 분산이 열전달 모델에 미치는 영향)

  • Chung, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1165-1173
    • /
    • 2003
  • The effects of (1) phonon dispersion on thermal conductivity model and (2) differentiation of group velocity and phase velocity are examined for germanium. The results show drastic change of thermal conductivity regardless of the same relaxation time model. Also the contribution of transverse acoustic (TA) phonon and longitudinal acoustic (LA) phonon on the thermal conductivity at high temperatures is reassessed by considering more rigorous dispersion model. Holland model, which is commonly used for modeling thermal conductivity, underestimates the scattering rate for TA phonon at high frequency. This leads the conclusion that TA is dominant heat transfer mode at high temperatures. But according to the rigorous consideration of phonon dispersion, the reduction of thermal conductivity is much larger than the estimation of Holland model, thus the TA at high frequency is expected to be no more dominant heat transfer mode. Another heat transfer mechanism may exist at high temperatures. Two possible explanations we the roles of (1) Umklapp scattering of LA phonon at high frequency and (2) optical phonon.

Impact of Phonon Dispersion on Thermal Conductivity Model (Phonon Dispersion이 열전달 모델에 미치는 영향)

  • Chung, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1627-1632
    • /
    • 2003
  • The effect of (1) phonon dispersion in thermal conductivity model and (2) the differentiation of group velocity and phase velocity for Ge is examined. The results show drastic change of thermal conductivity regardless of using same relaxation time model. Also the contribution of transverse acoustic (TA) phonon and longitudinal acoustic (LA) phonon is changed by considering more rigorous dispersion model. Holland model underestimates the scattering rate for high frequency TA, so misleading conclusion, i.e. TA is dominant heat transfer mode at high temperature. But the actual reduction of thermal conductivity is much larger than the estimation by Holland model and high frequency TA is no more dominant heat transfer mode. Another heat transfer mechanism may exist for high temperature. Two possible explanations are (1) high frequency LA by Umklapp scattering and (2) optical phonon.

  • PDF

SST Effect upon Numerical Simulation of Atmospheric Dispersion (대기확산의 수치모의에서 SST 효과)

  • 이화운;원경미;조인숙
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.767-777
    • /
    • 1999
  • In the coastal region air flow changes due to the abrupt change of surface temperature between land and sea. So a numerical simulation for atmospheric flow fields must be considered the correct fields of sea surface temperature(SST). In this study, we used variables such as latent heat flux, sensible heat flux, short and long wave radiation of ocean and atmosphere which exchanged across the sea surface between atmosphere and ocean model. We found that this consideration simulated the more precise SST fields by comparing with those of the observated results. Simulated horizontal SST differences in season were 2.5~4$^{\circ}C$. Therefore we simulated the more precise atmospheric flow fields and the movement and dispersion of the pollutants with the Lagrangian particle dispersion model. In the daytime dispersion pattern of the pollutants emitted from ship sources moved toward inland, in the night time moved toward sea by land/sea breeze criculation. But air pollutants dispersion can be affected by inland topography, especially Yangsan and coastal area because of nocturnal wind speed decrease.

  • PDF

Phonon Dispersion and Specific Heat in FCC Structure (FCC구조에서 포논분산과 비열)

  • Chung, Jae-Dong;Lee, Kyung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1207-1212
    • /
    • 2004
  • A model for the phonon dispersion relationship for cubic zinc sulfide structure, for example SiC, is developed in terms of two unknown force constants. Born model that incorporates bond bending and bond stretching, is used for the force constants. The force constants are determined by fitting to experimental data. Using only the nearest-neighbor coupling results in $6{\times}6$ sized dynamic matrix. The eigenvalues of dynamics matrix for each wavenumber in 3-D ${\kappa}$ space correspond to frequencies, 3 for optical phonon and 3 for acoustic phonon, which is so-called dispersion relation (${\kappa}$-${\omega}$). The density of state is determined by counting the states for each frequency bin, and the properties such as specific heat and thermal conductivity can be obtained. The specific heat is estimated on this model and compared with experiment and other models, i.e. Debye model, Einstein model and combined Debye-Einstein model. In spite of the simple bond potential model, reasonable agreements are found.

  • PDF

A study on Weibull Probability Statistics Characteristics for Vickers Hardness of Degraded Stainless Steel (열화된 스테인리스강의 비커스 경도에 대한 와이블 확률 통계 특성에 관한 연구)

  • Nam, Ki-Woo;Cho, Sung-Duck;Kim, Seon-Jin;Ahn, Seok-Hwan
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.79-85
    • /
    • 2017
  • Vickers hardness is an important material in the design and reliability is required. Therefore, these values are very important as the basic data for design, manufacture and development, and the identification of quantitative probability distribution characteristics such as mean and dispersion is a very important parameter in design. In this study, Vickers hardness was measured after artificially heat-treated in the temperature range 753K, where chrome depletion near the grain boundary occurred for three kinds of stainless steels, and the Vickers hardness were evaluated. From the results, Vickers hardness increased with increasing heat treatment temperature. In Weibull distribution for Vickers hardness, the dispersion of STS310S at 813K and 873K was small, and the dispersion of STS316L at 753K, 933K and 993K was small. Also, STS347H exhibited the lowest dispersion at 753K in three kinds of stainless steels. The scale parameter increased with increasing heat treatment temperature in three kinds of stainless steels.

Effect of Flue Gas Heat Recovery on Plume Formation and Dispersion

  • Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.161-172
    • /
    • 2012
  • Three-dimensional numerical simulation using a computational fluid dynamics (CFD) was carried out in order to investigate the formation and dispersion of the plume discharged from the stack of a thermal power station. The simulation was based on the standard ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite-volume method. Warm and moist exhaust from a power plant stack forms a visible plume as entering the cold ambient air. In the simulation, moisture content, emission velocity and temperature of the flue gas, air temperature and wind speed were dealt with the main parameters to analyze the properties of the plume composed mainly of water vapor. As a result of the simulation, the plume could be more apparent in cold winter due to a big difference of latent heat capacity. At no wind condition, the white plume rises 120 m upward from the top of the stack, and expands to 40 m around from the stack in cold winter after flue gas heat recovery. The influencing distance of relative humidity will be about 100 m to 400 m downstream from the stack with a cross wind effect. The decrease of flue gas temperature by heat recovery of thermal energy facilitates the formation of the plume and restrains its dispersion. Wind speed with vertical distribution affects the plume dispersion as well as the density.

Thermal Dispersion Analysis Using Semi-Active Particle Tracking in Near Field Combined with Two-Dimensional Eulerian-Lagrangian Far Field Model (근역에서 부력입자추적모형을 적용한 Eulerian-Lagrangian 결합에 의한 온수확산)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.73-82
    • /
    • 1998
  • In order to simulate surface discharged heat dispersion in costal area, a 2-dimensional Eulerian-Lagrangian model for far field and semi-active particle tracking random walk model in near field has been combined. The mass of discharged heat water in near field has treated as particles with buoyancy and this is eventually converted to horizontal additive dispersion in random walk equations. This model is applied to both a simplified coastal geometry and a real site. In simple application it can simulate plume-like characteristics around discharging point than a near field-model, CORMIX/3. Actual application in the Chonsu Bay shows farther spreading of heat water in near field comparing the observed data, and this shows that the developed model might be applied with satisfaction.

  • PDF