• Title/Summary/Keyword: Heat density

Search Result 1,935, Processing Time 0.032 seconds

Synthesis and Characterization of Type-VI Silica by Sol-Gel Method (졸-겔법을 이용한 Tape-VI형 실리카 에어로겔의 제조 및 특성분석)

  • 김성철;최대원;최용수;이종혁;이해욱;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.264-272
    • /
    • 1998
  • The effect of catalytic condition on the properties of SiO2 aerogels has been investigated and then the dri-ed aerogels were partially densified to induce mechanical strength by heat treatment in order to prepare Type-VI silica by Sol-Gel method. Aerogel made by 1-step base process had the highest skeletal density lowest shrinkage and the smallest particle size. But in case of using acid catalyst in both 1st and 2nd step had the lowest skeletal density highest shrinkage and the largest particle size The aerogel synthesized by 1-step base process was most transparent because of its homogeneous microstructure. During heat treatments cracks occurred below 200$^{\circ}C$ for aerogel with the skeletal density lower than 1.9 g/cm3 but the with the higher skeletal density did not cracked up to 800$^{\circ}C$ shrinkage and skeletal density increased as heating temperature increased due to condensation and viscous sintering mechanism.

  • PDF

Ablative Characteristics of Carbon/Carbon Composites by Liquid Rocket

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Nam-Joo
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.192-201
    • /
    • 2001
  • The Carbon/Carbon composite was prepared from 3D carbon fiber preform and coal tar pitch as matrix precursor. In order to evaluate of ablative characteristics of the composite, liquid rocket system was employed Kerosene and liquid oxygen was used as propellants, operating at a nominal chamber pressure of 330 psi and a nominal mixture ratio (O/F) of 2.0. The results of an experimental evaluation were that high density composite exhibited high, while low density composites showed low erosion resistance. The erosion rate against heat flux was highly depended on the density of the materials. The morphology of eroded fiber showed differently according to collision angle with heat flux on the composite. The granular matrix which derived from carbonization pressure of 900 bar was more resistance to heat flux than well-developed flow type matrix.

  • PDF

Fabrication of BSCCO high-Tc superconducting current lead (BSCCO 고온초전도 전류도입선의 제조)

  • 하동우;오상수;류강식;장현만
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.252-255
    • /
    • 1996
  • Superconducting current lead is one of the promising applications of the oxide high-Tc superconductors, because they have the advantage of decreasing heat conduction to low temperature region, comparing with a conventional cooper alloy lead. High critical current density is a key factor for the applications such as current lead. (Bi,Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$\_$x/ high Tc superconductor haute been investigated in terms of critical current density. Bi-2223 superconducting current lead made by CIP and solid state sintering process. Bi-2223 current lead that heat treated at 836$^{\circ}C$ for 240 h in 1/13 P$\_$O$_2$/ had over 150 A/$\textrm{cm}^2$ of critical current density at 77K. We knew that the superconducting properties of tube type current leads were better than rods type of them. And we investigated the relation of Bi-2223 formation and heat treatment condition by XRD and SEM analysis.

  • PDF

Design and Simulation of Heating Rubber Roller for Laminating Process

  • Hur, Shin;Woo, Chang Su
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.280-285
    • /
    • 2016
  • The purpose of this study is to get optimum design and operation conditions of the heating rubber roller for laminating process. The cause of performance degradation of heating rubber roller is delamination of rubber on metal tube, rubber aging due to high temperature. We measured the material properties of thermal expansion, thermal conductivity, specific heat and density and analyzed thermal distributions of rubber layer using finite element method. As a result of heat/flow analysis, the density distribution of heating coil must shorten the stabilization time by reducing the temperature deviation on the length direction at the temperature rising section after increasing the density of the area contacting with the laminate film at the center part which is an opposite of the current composition while enabling to maintain the temperature of heater to be consistent while maintaining the temperature deviation to be low when heat loss is created. Finally, we determined optimum heating method of heating rubber roller.

Investigation on a Prediction Methodology of Thermodynamic Properties of Supercritical Hydrocarbon Aviation Fuels (초임계 탄화수소 항공유의 열역학적 물성치 예측 기법 연구)

  • Hwang, Sung-rok;Lee, Hyung Ju
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.171-181
    • /
    • 2021
  • This study presents a prediction methodology of thermodynamic properties by using RK-PR Equation of State in a wide range of temperature and pressure conditions including both sub-critical and super-critical regions, in order to obtain thermophysical properties for hydrocarbon aviation fuels and their products resulting from endothermic reactions. The density and the constant pressure specific heat are predicted in the temperature range from 300 to 1000 K and the pressure from 0.1 to 5.0 MPa, which includes all of the liquid and gas phases and the super-critical region of three representative hydrocarbon fuels, and then compared with those data obtained from the NIST database. Results show that the averaged relative deviations of both predicted density and constant pressure specific heat are below 5% in the specified temperature and pressure conditions, and the major sources of the errors are observed near the saturation line and the critical point of each fuel.

An Experimental Study on Condensation Heat Transfer of Low-Finned Tubes (낮은 핀관 (low-fin tube)의 응축 열전달 성능에 관한 실험적 연구)

  • Kim, N.H.;Jung, I.K.;Kim, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.298-309
    • /
    • 1995
  • Low-fin tubes are widely used to enhance condensation heat transfer. In this study, condensation heat transfer experiment was conducted on the low-fin tube using R-11. Three different fin densities-787 fpm (fins per meter), 1102 fpm. 1378 fpm-were tested. The results show that low-fin tube enhances the condensation heat transfer considerablely. The enhancement increases as the fin density increases. It was also found that the fin shape and height have a significant effect on the condensation heat transfer coefficient. Slender or high fins showed a higher condensing heat transfer coefficient compared with fat, low fins. For the tube with 1378 fpm, however, excessive fin height decreased the condensing heat transfer coefficient. The reason may be attributed to the increasing condensate retention angle as the fin density increases. The experimental data are compared with existing prediction models. Results show that Webb's surface tension model predicted the data best (within ${\pm}20%$), which confirms that surface tension plays the major role in low-fin tube condensation.

  • PDF

Heat Flow of Round Jet Impinging Aluminum Foam Mounted on the Heated Plate with Constant Heat Flux (균일한 열유속을 갖는 가열된 평판에 부착된 발포알루미늄에 대한 원형 충돌제트의 열유동 특성)

  • Han, Young-Hee;Lee, Kye-Bock;Lee, Chung-Gu
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.108-113
    • /
    • 2009
  • An experimental study of jet impingement on aluminum foam mounted on the surface with constant heat flux is conducted with the presentation of the heat transfer rate measured when jet impinges normally to a flat plate. Effects of pore density, foam thickness and Reynolds number on the heat transfer are analyzed. Experimental results show that the significant enhancement in Nu is obtained when the aluminum foam is mounted on the heated plate and that the increase in the heat transfer due to the porous material insertion is dominated by both the increase in the heat transfer area and the decrease in the momentum flux resulted from the pressure drop.

Enhancement of heat exchange using On-chip engineered heat sinks

  • Chong, Yonuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.18-21
    • /
    • 2017
  • We report a method for improving heat exchange between cryo-cooled large-power-dissipation devices and liquid cryogen. Micro-machined monolithic heat sinks were fabricated on a high integration density superconducting Josephson device, and studied for their effect on cooling the device. The monolithic heat sink showed a significant enhancement of cooling capability, which markedly improved the device operation under large dc- and microwave power dissipation. The detailed mechanism of the enhancement still needs further modeling and experiments in order to optimize the design of the heat sink.

Enhanced nucleation density by heat treatment of nanodiamond seed particles (나노다이아몬드 seed 입자의 열처리에 의한 핵형성 밀도 향상)

  • Park, Jong Cheon;Jeong, Ok Geun;Son, Bit Na;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.291-295
    • /
    • 2013
  • Surface chemical modification via air and hydrogen heat treatment was found to relieve the aggregation of nanodiamond (ND) seed particles and lead to a significantly enhanced nucleation density for ultrananocrystalline diamond (UNCD) film growth. After heat treatment in air and hydrogen, modification of surface functionalities and increase in the zeta potential were observed. Mean size of the ND aggregates was also dramatically reduced from ${\sim}2{\mu}m$ to ~55 nm. Si surface seeded with ND particles heat-treated at $600^{\circ}C$ in hydrogen produced a much higher nucleation density of ${\sim}2.7{\times}10^{11}cm^{-2}$ compared to untreated ND seeds.

Microstructure and Critical Current Density of $Nb_3$Sn wire processed by Internal Tin Method (내부확산법으로 제조한 $Nb_3$Sn선재의 미세조직 및 임계전류밀도특성)

  • 김상철;오상수;하동우;하홍수;류강식;권해웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1022-1026
    • /
    • 1998
  • The mutifilamentary $Nb_3$Sn wire containing 135 Nb filaments was manufactured by the internal tin method. The critical current density ($J_C$) in magnetic fields for the wires heat-treated at $660^{/circ}C$ and $700^{/circ}C$ were investigated. The Non-Cu $J_C$ and n-value of 0.82 mm$\phi$ $Nb_3$Sn wire heat-treated at $700^{/circ}C$ for 240 hours was approximately 450 A/$mm^2$ at 12T, 4.2K and 14, respectively. Also the $B_{C2}$ of $Nb_3$Sn wire extrapolated by Kramer plot was 27.2T. The wire heat-treated at $700^{/circ}C$ for 240 hours showed smaller residual tin concentration in the matrix and the larger area of $Nb_3$Sn layer as comparison with the wire heat-treated at $660^{/circ}C$.

  • PDF