• Title/Summary/Keyword: Heat density

Search Result 1,935, Processing Time 0.026 seconds

A study on PCB Heat Dissipation Characteristics of High Density Power Supply for E-mobility (E-mobility용 고밀도 전원장치의 PCB방열 특성해석에 관한 연구)

  • Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.528-533
    • /
    • 2021
  • This paper presents the PCB heat dissipation characteristics of high density DC-DC converter for electric vehicles. This paper also analyzes the heat dissipation structure of the high density DC-DC converter and optimizes the PCB heat dissipation design of the high density power system through thermal analysis simulation. Based on heat transfer theory, the thermal path of general electronic devices is analyzed and the thermal resistance equivalent circuit is modeled in this paper. Additionally, the thermal resistance equivalent circuit of the 500W synchronous buck converter, which is addressed in this paper, is modeled to present a structural heat dissipation path for better thermal performance. The validity of the proposed scheme is verified through the thermal analysis simulation results and experiments applying multi-surface heat dissipation structure to a 500[W](12[V], 41.67[A]) synchronous buck converter prototype with an input voltage 72[V].

A study of heat transfer characteristics on the Multi-pass Heat exchanger with Minichannel (다분지 미니 채널 열교환기의 액단상 열전달 특성에 관한 연구)

  • Im, Yong-Bin;Lee, Seung-Hun;Kim, Jeung-Hoon;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.357-362
    • /
    • 2006
  • This research focused on the multi-pass heat exchanger using the minichannel possessing the spring fin. An air-water was used as working fluid. The characteristics of liquid single phase heat transfer were verified. The compact heat exchanger (heat transfer area density : ${\beta}=2,146 m^2/m^3$), based on the shape of header(Top combining header), 63 minichannels ($D_i$ : 1.4 mm, L : 0.25 m) and the air side adopting the copper wire spring fin, was fabricated. The heat transfer area density of the air side was improved up to 161% when compared with the conventional fin-tube heat exchanger that adopts the heat transfer tube with the inner diameter of 5 mm. With regard to heat transfer performance, heat transfer rate per unit volume increased up to 142% when compared with the fin-tube heat exchanger adopting the heat transfer tube with the inner diameter of 5 mm.

  • PDF

Microstructure and Mechanical Property in the Weld Heat-affected Zone of V-added Austenitic Fe-Mn-Al-C Low Density Steels

  • Moon, Joonoh;Park, Seong-Jun
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.31-34
    • /
    • 2015
  • Microstructure and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-Mn-Al-C low density steels were investigated through transmission electron microscopy analysis and tensile tests. The HAZ samples were prepared using Gleeble simulation with high heat input welding condition of 300 kJ/cm, and the HAZ peak temperature of $1200^{\circ}C$ was determined from differential scanning calorimetry (DSC) test. The strain- stress responses of base steels showed that the addition of V improved the tensile and yield strength by grain refinement and precipitation strengthening. Tensile strength and elongation decreased in the weld HAZ as compared to the base steel, due to grain growth, while V-added steel had a higher HAZ strength as compared than V-free steel.

An analysis of snow melting process for a study of defrosting phenomena (제상 현상 연구를 위한 눈 융해 과정 해석)

  • Lee, K.S;Ko, Y.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.38-47
    • /
    • 1999
  • An improved one-dimensional modeling of snow melting was obtained by considering both the effect of heat capacity and the decreasing influence of porosity. Using the improved model, the effects of initial snow temperature, initial snow density and the heat flux on the snow melting were investigated. It is found that the drainage starting time is delayed and the drainage rate becomes smaller with lower initial snow temperature. ResuIts also show that the drainage starts at the same time when an initial snow density is over a certain value. Melting efficiency increases linearly with an increasing initial snow temperature. With increasing the initial density of the snow and the amount of heat supplied, the melting efficiency increases, then converges to a constant value.

  • PDF

High Power-Density LDC Design for Ultra-Compact Electric Vehicles (초소형 전기자동차용 고밀도 LDC 설계)

  • Kim, Tae-Won;Lee, Jae-Won;Kim, Jun-Min;Kim, Gu-Yong;Kim, Jun-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.199-204
    • /
    • 2021
  • Ultra-compact electric vehicles have narrow space for power conversion devices. This work presents schemes to achieve the high-power density of a low-voltage DC-DC converter (LDC): simplifying a converter structure by using sync-buck topology, applying a planar inductor using PCB winding, and applying a plate-type heat sink. The heat sink is placed between two PCBs, which increases the contact surface between the PCB and the heat-dissipating device. It enables the miniaturization of the converter to improve the conditions of heat radiation. The validity of the proposed scheme is verified through the experiment using a 500 W(12 V, 41.67 A) prototype with an input voltage range from 58 V to 84 V.

A Study on the Distribution Characteristic of Urban Surface Temperature and Urban Heat Island Effects (도시 지표면 온도분포 특성 및 열섬완화방안)

  • Do, Hu-Jo;Lee, Jung-Min;Ra, Jung-Hwa
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.611-622
    • /
    • 2007
  • The purpose of this research was to three-criteria landuse-pattern, developing density, NDVI which were related to the heat island and find the distribution characteristic of urban surface temperature and urban heat island effects. The results of this study were as follows. According to the analysis of surface temperatures, the first grade was the outside-city like a mountain and its temperature was less than $12.18^{\circ}C$. The fifth grade was the downtown industrial area and its temperature was more than $23.54^{\circ}C$. It means Daegu-Metropolitan-City has the serious heat-island effect. the results of landuse pattern analysis, in case of fifth and forth grade, city area was occupied over 90% with residential, commercial and industrial areas, but in case of third grade, openspace was occupied over 70%. The results of developing density analysis, the temperature had high correlation with building ratio, road ratio, vegetation ratio and etc. To plan for the decrease of heat island effect needed the extension of green space, decrease of paving, but there was a limit to get the objective method for grade classification because of lacking in the basic data, the research of criteria will be accomplished continuously.

Effect of Heat-Treatment on the Crystallization of B Powder and Critical Current Density Property of MgB2 Superconductor (보론 분말의 결정화에 대한 열처리 영향과 MgB2 초전도체의 임계전류밀도 특성)

  • You, Byung Youn;Kim, Chan-Joong;Park, Soon-Dong;Jun, Byung-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.465-468
    • /
    • 2014
  • The crystallization effects of boron (B) powder on the phase, full width at half maximum (FWHM) values, and critical properties were investigated for in-situ reacted $MgB_2$ bulk superconductors. The semi-crystalline B powder was heat-treated at different temperatures of 1000, 1300 and $1500^{\circ}C$ for 5 hours in an Ar atmosphere. Then, using as-received and heat-treated B powders, the $MgB_2$ samples were prepared at $600^{\circ}C$ for 40 hours in an Ar atmosphere. As the heat-treatment temperature of the B powder increased, both the particle size of the B powder and crystalline phase increased. In the case of $MgB_2$ samples using B powders heat-treated at above $1300^{\circ}C$, unreacted magnesium (Mg) and B remained due to the improved crystallinity of the B powder. As the heat-treatment temperature of B powder increased, the critical current density of $MgB_2$ decreased continuously due to the reduction of grain boundary density and superconducting volume caused by unreacted Mg and B.

A Study on Thermal Properties and Impurities Measurement of Semiconductive Shield by ICP-AES (ICP-AES에 의한 반도전재료의 불순물 측정 및 열적특성에 관한 연구)

  • Lee, Kyoung-Yong;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.489-494
    • /
    • 2004
  • In this paper, we investigated impurities content and thermal properties showing by changing the content of carbon black which is semiconductive materials for underground power transmission. Specimens were made of sheet form with the three of existing resins and the nine of specimens for measurement. Impurities content of specimens was measured by ICP-AES(Inductively Coupled Plasma Atomic Emission Spectrometer), and density of specimens were measured by density meter. And then heat capacity(${\Delta}H$) and melting temperature(Tm), specific heat(Cp) were measured by DSC(Differential Scanning Calorimetry). The dimension of measurement temperature was $0[^{\circ}C]\;to\;200[^{\circ}C]$, and rising temperature was $4[^{\circ}C/min]$. Impurities content was highly measured according to increasing the content of carbon black from this experimental result also density was increased according to these properties. Specially, impurities content values of the A1 and A2 of existing resins were measured more than 4000[ppm]. Heat capacity, melting temperature, and specific heat from the DSC results were simultaneously decreased according to increasing the content of carbon black. Because metallic impurities of carbon black having Fe, Co, Mn, A1 and Zn are rapidly passed kinetic energy increasing the number of times breaking during the unit time with the near particles according to increasing vibration of particles by the applied heat energy.

  • PDF

Development of a Particle Bed Heat Exchanger(I) -An Experimental Study on Heat Transfer Characteristics of Fluidized Bed Heat Exchanger with Double Pipe (Counterflow) (입자층(粒子層)을 이용(利用)한 열교환기(熱交換器) 개발(開發)에 관(關)한 연구(硏究)(I) - 유동층형(流動層形) 이중관식(二重管式) 열교환기(熱交換器)의 전열특성(傳熱特性)에 대한 실험적(實驗的) 연구(硏究) (대향류식(對向流式)))

  • Lim, J.G.;Yoo, J.O.;Yang, H.J.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.119-126
    • /
    • 1990
  • In this study, the overall heat transfer coefficients are calculated on fluidized bed double pipe heat exchanger and single phase double pipe heat exchanger at the same condition. The effect of the particle size, its material, fluidizing velocity and static bed height on overall heat transfer coefficient has been investigated. The main conclusions obtained from the experiment are as follows. 1. The overall heat transfer coefficient of the fluidized bed heat exchanger is higher than that of single phase forced convective heat exchanger (maximum 2.3 times) 2. The value of the overall heat transfer coefficient increase with an increase in static bed height and decrease with an increase in particle size. 3. For the same particle size, the particle of low density can obtain higher overall heat transfer coefficient than that of high density.

  • PDF

Experimental Study on Zeolite 13x for Thermochemical Heat Storage (제올라이트를 이용한 화학축열에 대한 실험적 연구)

  • Ha, Seungho;Park, Junghoon;Lee, Soohun;Kim, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.8
    • /
    • pp.429-436
    • /
    • 2017
  • There are three main methods to store heat energy; sensible heat storage, latent heat storage, and thermochemical heat storage. Thermochemical heat storage has the highest storage density among the three methods, so this study focused on the thermochemical heat storage method. Experiments were conducted in this study with Zeolite 13x as thermochemical material in a large-scale reactor with 8 kg of Zeolite 13x. Experiments analyzed storage density of Zeolite 13x with respect to four different heating temperatures ($50^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$) in heat storage process. As a result, they showed 40~50 percent of storage efficiency in the experiment. Experiments also revealed that reactions between Zeolite 13x and water vapor were reversible and stable, but efficiency of the system was low, compared with sensible heat storage systems or latent heat storage systems.