• Title/Summary/Keyword: Heat chamber

Search Result 735, Processing Time 0.028 seconds

Combustion of PMMA in Liquid Oxygen Flow

  • Mitsutani, Toru;Ro, Takaaki;Yuasa, Saburo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.180-185
    • /
    • 2004
  • Our previous study showed that although the hybrid rocket engine with swirling gaseous oxygen had high performance, a direct injection of LOX with swirl into the combustion chamber of the hybrid rocket engine lowered the performance of the engine, compared to that with gaseous oxygen. In order to clarify this reason, combustion tests of a small PMMA combustor with an inner port diameter of 2 mm were conducted in liquid oxygen flow by comparison with gaseous oxygen flow. Although the oxygen mass fluxes of LOX were about two orders of magnitude larger than those of gaseous oxygen, the fuel regression rate of LOX were remarkably smaller than those of gaseous oxygen. For both liquid and gaseous oxygen, diffusion flames in the port of the grain controlled the combustion process of PMMA in oxygen flow. These results may be explained by the fact that only small amount of LOX vaporized and consumed in the combustion with PMMA while flowing through the port due to relatively larger latent heat of injected liquid oxygen compared to the heat of release by combustion which depended on the burning surface area of PMMA.

  • PDF

Research on the Optimal Operating Condition of a Total Heat Exchanger in Solar Air-Conditioning System (태양열 이용 냉난방 공조시스템 중 전열교환기의 최적운전조건에 관한 연구)

  • Kim, K.H.;Choi, K.H.;Kum, J.S.;Kim, B.C.;Kim, D.G.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.55-62
    • /
    • 1999
  • This study was performed to find out the influence of experimental factors on dehumidification performance and furthermore to suggest an optimal combination of factors of a total heat exchanger in a solar air conditioning system. The experimental apparatus was set up in a climate-controlled chamber where the temperature and humidity was maintained constant. In order to find out the contribution ratio of factors on dehumidification performance, the table of orthogonal arrays $L_8(2^7)$ was used. According to the results, the most influential factor on dehumidification performance was the concentration of LiCl(Lithium Chloride) solution. The next influential factors were the temperature of LiCl solution and the air flow rate. The packed layer height, packed material, and flow rate of LiCl solution had no influence on the dehumidification performance under these experimental conditions. Through the three level experiments of $L_{27}(3^{13})$, it was found that the optimal combination was $A_2B_0G_2$(concentration of solution 30 wt%, temperature of solution $15^{\circ}C$, air flow rate $253m^3/h$).

  • PDF

A Study on the Measurement of Temperature and Soot for Diffusion Flame in a Visualized D.I Diesel Engine Using the Two-color Method (이색법을 이용한 직분식 디젤 가시화 엔진내의 확산화염 온도 및 매연 측정에 관한 연구)

  • Han, Yong-Taek;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.177-185
    • /
    • 2007
  • The temperature and soot of the visualized diesel engine's turbulent flow of flame was qualitatively measured. In combustion chamber, in order to judge the affect that the swirl has on the in-cylinder's current, was used two different heads with different values. Using the high speed camera, and the results were analyzed using the heat release rate produced by the pressure sensor. In order to measure the temperature and soot of the turbulent flames like that of the diesel flames two color methods were used temperature and the soot of the flames according to the conditions through analyzing the two wavelengths of the flames. It was possible to measure the highest temperature of the non-swirl head visualized engine which is approximately 2400K, and that swirl head engine managed up to 2100K. With respect to the visualized diesel engine soot, we got the grasp of the KL factor which bears the qualitative information of soot. This study is dedicated to suggesting the possibility of measuring not only the temperature but also soot of the diffusion flame of the diesel engine turbulent flames through such method.

Experimental study of turbulent thermal convection between two flat plates (실험적 방법에 의한 두 평판 사이의 난류 열대류의 해석)

  • 윤효철;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1138-1149
    • /
    • 1988
  • Experiments have been conducted to investigate mean thermal structure in unstable turbulent thermal convection between two horizontal flat plates. The upper plate was kept at a constant cold temperature and the bottom plate at a constant hot temperature. Both air and water were used as its working fluids. Chamber aspect ratios were 3.80 and 6.17, the mean temperature differences between two plates were 2.6-9.3.deg. C, whose Rayleigh numbers in a range 6.13*10$^{5}$ -1, 07*10$^{8}$ . The heat transfer correlations obtained through the experiments are Nu=0.139R $a^{0.285}$ for air and Nu=0.087 R $a^{0.319}$ for water. Profiles of the mean temperature gradient clearly show the -2 and 1 4/3 power law regions.

Performance Prediction Method of Separation Mechanism by using a Gas Generator (가스발생기를 이용한 분리 메카니즘 성능예측 기법)

  • Oh, Seok-Jin;Lee, Do-Hyung;Kim, Sang-Hwa;Kim, Ki-Un
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.199-202
    • /
    • 2008
  • This paper presents a mathematical-physical model to predict the performance of a gas pusher used as a separation system powered by a gas generator. The empirical coefficients of heat loss and friction were determined from experiments. Based on the grain configuration of the gas generator, the analytical approach of combustion, flow and movement of a piston inside the chamber of a gas generator and a gas pusher was simulated by numerical method. The prediction method developed can be usefully applied to the design of separation mechanism systems.

  • PDF

A Study on Manufacture and Performance Evaluation of a Loop Heat Pipe System with a Cylindrical Evaporator for IGBT Cooling (전력반도체 냉각을 위한 원통형 루프히트파이프 제작 및 성능 평가에 관한 연구)

  • Ki, Jae-Hyung;Ryoo, Seong-Ryoul;Sung, Byung-Ho;Kim, Sung-Dae;Choi, Jee-Hoon;Kim, Chul-Ju
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1710-1716
    • /
    • 2008
  • The Loop Heat Pipe (LHP) operates to pump the working fluid by means of the capillary force in a wick structure. Particularly, it is difficult to design and manufacture the evaporator consisted of a grooved container and a compensation chamber as well as the wick structure. This study is related to design and manufacture the grooved container coupled with wick structure, the properties of the wick structure such as the permeability, the porosity, and the maximum capillary pressure were measured to apply the cooling technology for Insulated Gate Bipolar Transistor (IGBT). The container of the LHP was manufactured by the electrical discharge process and the wick structure was sintered with the nickel particle by an axial-press apparatus with the pulse electronic discharge. As results, the properties of the wick were experimentally obtained about 60% of the porosity, 35kPa of the maximum capillary force and $1.53{\times}10-13m2$ of the permeability.

  • PDF

CFD Numerical Calcultion for a Cavity Matrix Combustor Applying Biogas (바이오가스 적용 캐비티 매트릭스 연소기 CFD 수치연산)

  • CHUN, YOUNG NAM;AN, JUNE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.598-606
    • /
    • 2022
  • With the advancement of industry, the use of various sustainable energy sources and solutions to problems affecting the environment are being actively requested. From this point of view, it is intended to directly burn unused biogas to use it as energy and to solve environmental problems such as greenhouse gases. In this study, a new type of cavity matrix combustor capable of low-emission complete combustion without complex facilities such as separation or purification of biogas produced in small and medium-sized facilities was proposed, and CFD numerical calculation was performed to understand the performance characteristics of this combustor. The cavity matrix combustor consists of a burner with a rectangular porous microwave receptor at the center inside a 3D cavity that maintains a rectangular parallelepiped shape composed of a porous plate that can store heat in the combustor chamber. As a result of numerical calculation, the biogas supplied to the inlet of the combustor is converted to CO and H2, which are intermediate products, on the surface of the 3D matrix porous burner. And then the optimal combustion process was achieved through complete combustion into CO2 and H2O due to increased combustibility by receiving heat energy from the microwave heating receptor.

Combining ex vitro thermotherapy with shoot-tip grafting for elimination of virus from potted apple plants (기외 열처리와 경정접목을 이용한 사과 폿트묘에서의 바이러스 제거)

  • Chun, Jae An;Gwon, Jiyeong;Lee, Seon Gi
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.222-229
    • /
    • 2022
  • Apples are the most grown fruit crops in the fruit industry of Korea. However, virus or viroid infection such as apple mosaic virus (ApMV), apple stem grooving capillovirus (ASGV), apple stem pitting virus (ASPV), apple chlorotic leaf spot virus (ACLSV), apple scar skin viroid (ASSVd) causes fruit yield reduction and poor fruit quality. Therefore, in this study, we examined to established an efficient virus-free system to eliminate the most infected ASGV virus in domestic apple orchard. We investigated that the shoot growth rate and the virus removal rate in ASGV infected potted apples that were treated with heat treatment in a growth chamber (constant temperature/humidity device) maintained at 36℃, 38℃ and 40℃ for 4 weeks. Here we found that the shoot growth rate was the highest in the heat treatment group (36℃) and the virus was removed in the middle and top of the shoot but not in the bottom. The virus was did not removed in the 38℃ and 40℃ heat treatment group in all section of shoots, and the heat treatment group (40℃) died after 4 weeks of heat treatment without growth of shoots. We performed in vivo shoot-tip grafting using the shoot-tip of potted apple heat-treated at 36 ℃, and we also investigated the viability and virus removal rate, which showed 94% viability and 20% virus removal rate. Collectively, our results suggest that it would be possible to produce the virus-free apple plants through heat treatment and shoot-tip grafting.

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (IV) -Torch Ignition (2) - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (IV) -토치 점화 (2)-)

  • Ko, Ansu;Ohm, Inyong;Kwon, Soon Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.135-146
    • /
    • 2015
  • This paper is the fourth on the combustion characteristics of the landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine and the second dealing with torch ignition. It discusses the combustion characteristics of torch ignition on the basis of the heat release and visualization. The results show that the jet and/or spout from the torch promote combustion by accelerating the flame front in the main combustion chamber. In addition, a hot gas jet exists when the orifice diameter is 4 mm, whereas the flame passes directly through the orifice if the diameter is 6 mm or greater. In addition, the effect of torch ignition differs according to the combination of the methane fraction, torch volume, and orifice size because various combustion processes occur as a result of the interaction of these parameters. Finally, it was found that the most suitable torch should have an orifice diameter of not less than 6 mm and an area ratio of not more than 0.15 to secure a consistent combustion process in a real engine.

Estimation of the amount of refrigerant in artificial ground freezing for subsea tunnel (해저터널 인공 동결공법에서의 냉매 사용량 산정)

  • Son, Youngjin;Choi, Hangseok;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.255-268
    • /
    • 2018
  • Subsea tunnel can be highly vulnerable to seawater intrusion due to unexpected high-water pressure during construction. An artificial ground freezing (AGF) will be a promising alternative to conventional reinforcement or water-tightening technology under high-water pressure conditions. In this study, the freezing energy and required time was calculated by the theoretical model of the heat flow to estimate the total amount of refrigerant required for the artificial ground freezing. A lab-scale freezing chamber was devised to investigate changes in the thermal and mechanical properties of sandy soil corresponding to the variation of the salinity and water pressure. The freezing time was measured with different conditions during the chamber freezing tests. Its validity was evaluated by comparing the results between the freezing chamber experiment and the numerical analysis. In particular, the freezing time showed no significant difference between the theoretical model and the numerical analysis. The amount of refrigerant for artificial ground freezing was estimated from the numerical analysis and the freezing efficiency obtained from the chamber test. In addition, the energy ratio for maintaining frozen status was calculated by the proposed formula. It is believed that the energy ratio for freezing will depend on the depth of rock cover in the subsea tunnels and the water temperature on the sea floor.