• Title/Summary/Keyword: Heat chamber

Search Result 735, Processing Time 0.032 seconds

Effect of Moisture in a Vacuum Chamber on the Deposition of c-BN Thin Film using an Unbalanced Magnetron Sputtering Method (비대칭 마그네트론 스퍼터링 방법에 의한 질화붕소막의 증착시 반응실내의 초기 수분이 입방정질화붕소 박막의 형성에 미치는 영향)

  • Lee, Eun-Sook;Park, Jong-Keuk;Lee, Wook-Seong;Seong, Tae-Yeon;Baik, Young-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.620-624
    • /
    • 2012
  • The role of moisture remaining inside the deposition chamber during the formation of the cubic boron nitride (c-BN) phase in BN film was investigated. BN films were deposited by an unbalanced magnetron sputtering (UBM) method. Single-crystal (001) Si wafers were used as substrates. A hexagonal boron nitride (h-BN) target was used as a sputter target which was connected to a 13.56 MHz radiofrequency electric power source at 400 W. The substrate was biased at -60 V using a 200 kHz high-frequency power supply. The deposition pressure was 0.27 Pa with a flow of Ar 18 sccm - $N_2$ 2 sccm mixed gas. The inside of the deposition chamber was maintained at a moisture level of 65% during the initial stage. The effects of the evacuation time, duration time of heating the substrate holder at $250^{\circ}C$ as well as the plasma treatment on the inside chamber wall on the formation of c-BN were studied. The effects of heating as well as the plasma treatment very effectively eliminated the moisture adsorbed on the chamber wall. A pre-deposition condition for the stable and repeatable deposition of c-BN is suggested.

The heat transfer characteristics of a desorber for 150 RT absorption heat pump (150 RT급 흡수식 열펌프용 고온재생기의 열전달 특성)

  • 박찬우;정종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.369-376
    • /
    • 1999
  • Experiments were carried out to study the heat transfer characteristics of a disrober for 150 RT LiBr-water absorption heat pump. An experimental apparatus was divided into four sections, a combustion chamber area, two bare-tube areas, and finally a finned-tube area to quantify the heat transfer rate of each section by measuring the generation rate of vapor. Dividing plates was installed at the upper inside part of deserter to prohibit the moving of vapor generated at heating tubes of a section to another section near. In the first bare-tube area, the generation rate of vapor was the largest among the four sections. The finned-tube area only contributed to give sensible heat increase of solution to the saturation temperature. The heat transfer area of the finned-tube area was 52.2%, which absorbed only 9.2% of the total heat from the combustion gas. On the contrary, the heat transfer area of the first bare-tube area was 16.6%, but it absorbed 52.4% of the total absorbed heat. The temperature of the solution at upper part at the finned-tube area was lower than that of the lower part, because weak solution came in upper part of the finned-tube area. But, this tendency was changed at the first and second bare-tube area due to the vigorous heat transfer and fluid flow enhanced by vapor generation through heating tubes. The overall heat transfer coefficient and heat flux were the largest at the first bare-tube area among the other sections.

  • PDF

Ablative Characteristics of Carbon/Carbon Composites by Liquid Rocket

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Nam-Joo
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.192-201
    • /
    • 2001
  • The Carbon/Carbon composite was prepared from 3D carbon fiber preform and coal tar pitch as matrix precursor. In order to evaluate of ablative characteristics of the composite, liquid rocket system was employed Kerosene and liquid oxygen was used as propellants, operating at a nominal chamber pressure of 330 psi and a nominal mixture ratio (O/F) of 2.0. The results of an experimental evaluation were that high density composite exhibited high, while low density composites showed low erosion resistance. The erosion rate against heat flux was highly depended on the density of the materials. The morphology of eroded fiber showed differently according to collision angle with heat flux on the composite. The granular matrix which derived from carbonization pressure of 900 bar was more resistance to heat flux than well-developed flow type matrix.

  • PDF

Experiments on the Behavior of Underground Utility Cable in Fire (지하구 케이블의 연소특성 실험)

  • 박승민;김운형;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2002
  • In this paper, some experiments of a heat release rate and toxicity for underground utility 22.9kv cable in fire was conducted and analysed applying plume equation and smoke chamber test separately, A 22.9 ㎸ power cable is selected for testing heat release in ISO 9705 geometry and toxicity production is measured with NES 713 (British-Naval Engineering Standard)test. In test results, Cable heat release reached about 60 ㎾ above 1.2 m from heptane pan and CO generated lethal concentration under 30 min. exposure condition.

A Study on Mechanical Property of SM53C Steel by High Frequency Induction Hardening (고주파열처리 SM53C강의 기계적 성질에 관한 연구)

  • Kim, Hwang-Soo;Kim, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.7-15
    • /
    • 2010
  • Recently, with the high performance and efficiency of machine, there have been required the multi-functions in various machine parts, such as the heat resistance, the abrasion resistance and the stress resistance as well as the strength. Fatigue crack growth tests were carried out to investigate the fatigue characteristics of high carbon steel (SM53C) experienced by high-frequency induction treatment. The Cam nose part of the Automobile's Cam shaft is strongly bumped with rocker arm or valve-lift. Therefore abnormal wear such as unfair wear and early wear occur in the surface. This abnormal wear causes a defect that bad timing open and close actions of the engine valve happen in the combustion chamber so the fuel gas will be combustion imperfect. Therefore, the cam shaft demands high hardness and wear resistance. In this study, high frequency heat treatment has been accomplished while wear test for material SM53C.

액체추진기관의 복사열전달 분석

  • Ahn, Won-Geun;Park, Hee-Ho;Hwang, Su-Kwon;Kim, Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.2-3
    • /
    • 2002
  • 일반적으로 연소과정에서 발생한 고온고압의 연소가스로 인하여 액체추진기관의 연소실 및 노즐 벽면 그리고 추진기관 후방부위에 대류열전달(Convective heat transfer)과 복사열전달(Thermal radiative heat transfer)이 발생하는 것으로 알려져 있으며, 액체추진기관에서 발생하는 복사열전달 현상은 재생냉각장치의 열입력량 예측 및 발사체의 추진기관 후방부위에 탑재되는 전자장이 및 구조물의 열적환경(Thermal environmental phenomena)을 분석하는데 매우 중요하다. 이에 본 연구에서는 노즐 후방부위에서 발생하는 복사열전달량(Radiative heat transfer rate)을 측정하고 연소압(Chamber pressure)과 혼합비(Mixture ratio)에 따른 영향을 파악하였다.

  • PDF

Thermal Environment Analysis of a Room in Accordance with Ventilation Condition with Multi-Heat Sources (다수의 열원을 가지는 공간에서의 환기 조건에 따른 열환경 해석)

  • Kim, Jae-Jung;Son, Young-Gap;Chang, Seog-Weon;Ryu, Dong-Su
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.199-204
    • /
    • 2000
  • This paper reports a thermal environmental analysis of a room in accommodated with multi-heat sources according to ventilation condition. Two case modification have been investigated to obtain the lower temperature distribution in the room. The temperature distribution of the original room were found about $25{\sim}35^{\circ}C$. As a result, the use of, three ventilating fans and two electric fans are useful for room ventilation respectively, and using two electric fan is more recommendable in side of economical efficiency.

  • PDF

Experimental and Theoretical Study on the Effect of Pressure on the Surface Reaction over Platinum Catalyst (백금촉매의 표면반응에 미치는 압력의 영향에 관한 실험 및 이론적 연구)

  • Kim, Hyung-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Surface reaction occurs at a certain surface temperature when a catalyst is heated up in a reactive mixture. If homogeneous ignition does not occur, a steady state is observed because the heat produced by the surface reaction is balanced with the heat loss caused by convection, conduction and radiation. The present paper treats the effects of pressure on the surface temperature at the steady state. Hydrogen and oxygen are used as reactants and nitrogen as an inert gas. A spherical platinum catalyst of 1.5 mm in diameter is sustained in the chamber with two wires of 0.1 mm in diameter. As results, there exists a maximum steady temperature at a certain relative hydrogen concentration which increases with total pressure. At the steady state, it can be approximated that the heat release is estimated by the mass transfer considering the effect of natural convection. The experimental results are explained qualitatively by the approximation.

  • PDF

Effect of Precooling on Removal of Field Heat and Respiration Rate of Vegetable Corn(Zes Mays L.) (예냉처리가 풋옥수수의 냉각속도 및 호흡량 변화에 미치는 영향)

  • 손영구;김성열
    • Food Science and Preservation
    • /
    • v.3 no.1
    • /
    • pp.55-60
    • /
    • 1996
  • To obtain the basic data on precooling effects for establishment the suitable postharvest handling technique or method of keeping high quality of vegetalble corn, the sweet, supersweet and waxy corn, (Danok #2, Cocktail #86 and Chalok #1), being mainly consumed as vegetables in Korea, were precooled with ice or vacuum cooling method immediately after harvest. The vacuum cooling was the most effective for the field heat removal of vegetable corn. It took only 30 min. at 4 to 5 torr of cold chamber pressure of vacuum precooler to lower the corn temperature from 30 to 2$^{\circ}C$. The ice cooling was also thought to be a useful precooling method with relatively short cooling time of 6 hrs. The vegetable corn treated with vacuum or ice cooling showed low and stable respiration rates of 25.5 to 43.5 CO2 mg/kg/hr. when stored at 0∼2$^{\circ}C$ while the samples stored at room temperature (20∼25$^{\circ}C$) without precooling were as high as 64.1 to 245 CO, mg/kg/hr.

  • PDF

Heat calculation in the slotted cooling liner (슬롯형 냉각라이너에서의 열해석)

  • Jeong, Hae-Seung;Hwang, Ki-Young;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.642-647
    • /
    • 2010
  • Film cooling is used to protect thermally the inner wall of combustion chamber exposed to hot gas in air-breathing propulsion system and specially film cooling using slotted cooling liner has been investigated to improve the cooling characteristics for a long time. In this paper results from gas dynamic and heat transfer calculations were presented in the combustion area and cooling area of multi-slotted cooling liner.

  • PDF