• 제목/요약/키워드: Heat and Mass Transfer

검색결과 1,287건 처리시간 0.029초

Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber

  • Phan, Thanh-Tong;Song, Sung-Ho;Moon, Choon-Geun;Kim, Jae-Dol;Kim, Eun-Pil;Yoon, Jung-In
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.41-47
    • /
    • 2002
  • A model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber was developed. The model can predict temperature and concentration profiles as well as the absorption heat and mass fluxes, the total heat and mass transfer rates and the heat and mass transfer coefficients. Besides, the effect of operating condition on absorption mass flux has been investigated, with the result that the absorption mass flux is increased as the inlet cooling water temperature decreases, the system pressure increases and the inlet solution concentration increases. And among the effects of operating parameters on absorption mass flux, the effect of inlet solution concentration is dominant.

  • PDF

배열충돌제트에서 횡방향유동성분에 따른 열/물질전달 특성 고찰 (Effect of Arrays of Impinging Jets with Crossflow on Heat/Mass Transfer)

  • 윤필현;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.195-203
    • /
    • 2000
  • The local heat/mass transfer coefficients for arrays of impinging circular air jets on a plane surface are determined by means of the naphthalene sublimation method. Fluid from the spent jets is constrained to flow out of the system in one direction. Therefore, the spent fluid makes a crossflow in the confined space. The present study investigates effects of jet-orifice-plate to impingement-surface spacing and jet Reynolds number. The spanwise- and overall-averaged heat/mass transfer coefficients are obtained by numerical integrating the local heat transfer coefficients. The local maximum heat/mass transfer coefficients move further in the downstream direction due to the increase of crossflow velocity. At the mid-way between adjacent jets, the heat/mass transfer coefficients have a small peak owing to the collision of the adjacent wall jets and are affected strongly by the crossflow. The effect of the crossflow occurs strongly at the small orifice-to-impingement surface distance.

Heat and mass transfer processes at the most heat-stressed areas of the surface of the descent module

  • Oleg A., Pashkov;Boris A., Garibyan
    • Advances in aircraft and spacecraft science
    • /
    • 제9권6호
    • /
    • pp.493-506
    • /
    • 2022
  • The study presents the results of the research of heat and heat exchange processes on the heat-stressed elements of the structure of an advanced TsAGI descent vehicle. The studies were carried out using a mathematical model based on solving discrete analogs of continuum mechanics equations. Conclusions were drawn about the correctness of the model and the dependence of the intensity of heat and mass transfer processes on the most heat-stressed sections of the apparatus surface on its geometry and the catalytic activity of the surface.

유츨 허브를 갖는 HDD내 동시회전디스크 표면에서의 열전달 및 유동특성 해석 (Heat Transfer and Flow Characteristics on Co-rotating Disks with a Ventilation Hub in Hard Disk Drive)

  • 조형희;원정호;류구영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.382-389
    • /
    • 2001
  • In the present study, local heat transfer rates for co-rotating disks with two modified hubs having ventilation holes are investigated for Rossby number of 0.04, 0.1 and 0.35 to evaluate the influence of incoming flows through hub holes. A naphthalene sublimation technique is employed to determine the detailed local heat/mass transfer coefficients on the rotating disks using the heat and mass transfer analogy. Flow field measurements are conducted using Laser Doppler Anemometry (LDA) and numerical calculations are performed simultaneously to analyze the flow patterns induced by the disk rotation. The basic flow structure in a cavity between co-rotating disks consists of three regions; the solid-body rotating inner region, the outer region with turbulence vortices and the shroud boundary layer region. The heat/mass transfer. rates on the co-rotating disks are very low near the hub due to the solid-body rotation and those increase rapidly in the outer region due to turbulence mixing. The modified hubs with ventilation holes enhances significantly the heat/mass transfer rates on the region near the hub. The results also show that the heat transfer of Hub-2 is superior to that of Hub-1, but Hub-1 is more profitable for destructing the solid-body rotating inner region.

  • PDF

An Experimental Study on Convective Boiling of R-22 and R-410A in Horizontal Smooth and Micro-fin Tubes

  • Kim, Yongchan;Seo, Kook-Jeong;Lee, Kyu-Jung;Park, Youn cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1156-1164
    • /
    • 2001
  • Evaporation heat transfer coefficients and pressure drops were measured for smooth and micro-fin tubes with R-22 and R-410A. Heat transfer measurements were performed for 3.0m long horizontal tubes with nominal outside diameters of 9.52 and 7.0mm over an evaporating temperature range of -15 to 5$\^{C}$, a mass flux range of 68 to 211kg/㎡s, and a heat flux range of 5 to 15kW/㎡. It was observed that the heat transfer coefficient increased with mass flux. Evaporation heat transfer coefficients of R-22 and R-410A increased as the evaporating temperature dropped at a lower heat flux. Generally, R-420A showed the higher heat transfer coefficients than R-22 in the range of low mass flux, high heat flux and high evaporating temperature. Pressure drop increased with a decrease of evaporating temperature and a rise of mass flux. Pressure drop of R-22 was higher than that of R-410A at the same mass flux.

  • PDF

열전달 및 물질전달을 이용한 공극 발열도로에서의 융설 해석에 대한 이론적 연구 (Theoretical Study on Snow Melting Process on Porous Pavement System by using Heat and Mass Transfer)

  • 윤태영
    • 한국도로학회논문집
    • /
    • 제17권5호
    • /
    • pp.1-10
    • /
    • 2015
  • PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.

회전덕트에서 요철 배열 및 회전수 변화에 따른 열전달 특성 (EFFECTS OF RIB ARRANGEMENTS AND ROTATION ON HEAT TRANSFER IN A ROTATING TWO-PASS DUCT)

  • 김경민;김윤영;이동호;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2211-2218
    • /
    • 2003
  • The present study investigates heat/mass transfer characteristics in a rotating two-pass duct for smooth and ribbed surfaces. The duct has an aspect ratio of 0.5 and a hydraulic diameter of 26.67 mm. 70-angled rib turbulators are attached on the leading and trailing sides of the duct in parallel and cross arrangements. The pitch-to-rib height ratio is 7.5 and the rib height-to-hydraulic diameter ratio is 0.075. The Reynolds number based on the hydraulic diameter is constant at 10,000 and the rotation number ranges from 0.0 to 0.2 Detailed local heat/mass transfer coefficients are measured using a naphthalene sublimation technique. The results show that the secondary flows generated by the $180^{\circ}-turn$, rib turbulators, and duct rotation affect the wall heat/mass transfer distribution significantly, As the duct rotates, the rotaion-induced Coriolis force deflects the main flow and results in differences on the heat/mass transfer distribution between the leading and trailing surfaces. Its effects become more dominant as the rotaion number increases. Discussions are presented describing how the rib configuration and the rotaion speed affect the flow patterns and local heat/mass transfer in the duct.

  • PDF

초기 횡방향 유동이 존재하는 충돌제트/유출냉각에서 요철이 설치된 유출면에서의 열/물질전달 특성 (Heat/Mass Transfer Characteristics on Rib-roughened Surface for Impingement/Effusion Cooling System with Initial Crossflow)

  • 이동호;남용우;조형희
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.338-348
    • /
    • 2004
  • The present study is conducted to investigate the effect of rib arrangements on an impingement/effusion cooling system with initial crossflow. To simulate the impingement/effusion cooling system, two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of tile hole diameter. Initial crossflow passes between the injection and effusion plates, and the square ribs (3mm) are installed on the effusion plate. Both the injection and effusion hole diameters are 10mmand Reynolds number based on the hole diameter and hole-to-hole pitch are fixed to 10,000 and 6 times of the hole diameter, respectively. To investigate the effects of rib arrangements, various rib arrangements, such as 90$^{\circ}$transverse and 45$^{\circ}$angled rib arrangements, are used. Also, the effects of flow rate ratio of crossflow to impinging jets are investigated. With the initial crossflow, locally low transfer regions are formed because the wall jets are swept away, and level of heat transfer rate get decreased with increasing flow rate of crossflow. When the ribs are installed on the effusion plate, the local distributions of heat/mass transfer coefficients around the effusion holes are changed. The local heat/mass transfer around the stagnation regions and the effusion holes are affected by the rib positions, angle of attack and rib spacing. For low blowing ratio, the ribs have adverse effects on heat/mass transfer, but for higher blowing ratios, higher and more uniform heat transfer coefficient distributions are obtained than the case without ribs because the ribs prevent the wall jets from being swept away by the crossflow and increase local turbulence of the flow near the surface. Average heat transfer coefficients with rib turbulators are approximately 10% higher than that without ribs, and the higher values are obtained with small pitch of ribs. However, the attack angle of the rib has little influence on the average heat/mass transfer.

흰-관 열교환기에서 재료절감 흰의 제습특성 (Dehumidifying Performance of Material-Saving Fin in Fin-tube Heat Exchanger)

  • 강희찬;김무환
    • 설비공학논문집
    • /
    • 제13권8호
    • /
    • pp.730-738
    • /
    • 2001
  • This work discusses the pressure droop, heat and mass transfer of the finned-tube heat exchangers having 7 mm tubes and offset strips in dehumidifying applications. It focuses on the fin material saving and the reduction of pressure drop. The experiment was conducted using three times scaled-up models to simulate the performance of the prototype. Eight kinds of fins having different strips and S shape edges were tested. the area density of the strip was a major factor and its shape and the location were secondary factors on the pressure drop, the heat and mass transfer. The reduced-area fin can almost equal the non-reduced fin in the aspect of heat and mass transfer. The strip fins proposed in the present work can considerably reduce both the pressure drop and the fin material for similar thermal load.

  • PDF

사각 덕트내 요철의 각도 변화에 따른 열전달 특성 (Augmented heat transfer in a rectangular duct with angled ribs)

  • 우성제;김완식;조형희
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.530-541
    • /
    • 1998
  • Heat transfer augmentation in a rib-roughened duct is affected by the rib configurations, such as rib height, angle of attack, shape, rib to rib pitch, and aspect ratio of a duct. These have been the main subjects in studying the average heat transfer and the friction loss of the fully developed flow. Investigating distributions of local heat transfer coefficients and flow patterns in a duct with the rib turbulators is necessary to find the characteristics of heat transfer augmentation and to decide the optimal configurations of ribs. In the present study the numerical analyses and the mass transfer experiments are performed to understand the flow through a rib roughened duct and the heat transfer characteristics with various angles of attack of ribs. A pair of counter-rotating secondary flow in a duct has a main effect on the lateral distributions of local mass transfer coefficients. Downwash of the rotating secondary flow, reattachment of main flow between ribs and the vortices near ribs and wall enhanced the mass transfer locally up to 8 times of that in case of the duct without ribs.