• 제목/요약/키워드: Heat Transfer Experiment

검색결과 742건 처리시간 0.03초

사각로드를 이용한 충돌분류계의 열전달증진에 관한 연구(로드폭의 영향) (An Experimental Study on Heat Transfer Augmentation by Square Rod in Impinging Air Jet System(Effect of Rod Width))

  • 금성민;이용화;서정윤
    • 태양에너지
    • /
    • 제15권3호
    • /
    • pp.127-140
    • /
    • 1995
  • 본 연구는 2차원 충돌공기분류계에서 공기의 흐름 방향과 수직이 되게 설치한 평판 전열면 앞에 전열증진을 목적으로 난류촉진체인 정4각 로드군을 설치할때의 유동특성과 전열특성을 실험을 통해서 구명하고, 본 실험범위내에서 로드의 최적 설치조건을 제시하기 위한 실험적 연구이다. 실험은 먼저 로드를 설치하지 않은 평판에서의 전열특성을 밝힌후, 로드를 설치할 경우 로드의 피치가 40mm일때 로드와 전열면사이의 간극 및 로드폭 변화시의 유동특성과 전열 특성을 구명하여 로드를 설치하지 않은 평판과의 전열성능을 비교하였다. 본 실험범위내에서 전열면에 간극을 두고 로드를 설치하면 로드 바로 밑에서의 가속 및 로드에 의한 난류생성과 재부착에 의해 전열성능은 향상되며 로드폭을 변화시킨 경우에는 로드폭이 클수록 로드 바로 밑에서의 가속효과와 로드 직전에 와류의 영향이 크게 작용하여 전열성능이 향상된다.

  • PDF

플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템 개발(開發)에 관(關)한 연구(硏究)(I) -수막식(水膜式) 열교환(熱交換) 시스템의 개발(開發)- (Development of Thermal Storage System in Plastic Greenhouse (I) -Development of Air-Water Heat Exchange System-)

  • 김용현;고학균;김문기
    • Journal of Biosystems Engineering
    • /
    • 제15권1호
    • /
    • pp.14-22
    • /
    • 1990
  • For efficient use of solar energy in plastic greenhouse, thermal storage system was developed. The system was constructed with the counter-flow type air-water heat exchanger using a thin polyethylene film as a medium of heat exchange parts. Experiments were carried out to investigate the heat exchange rate, optimum water flow rate, overall heat transfer coefficient, and the effectiveness of the counter-flow type air-water heat exchanger with polyethylene film bags. Mathematical model to predict air temperature leaving heat exchanger was developed. The results obtained in the present study are summarized as follows. 1. Heat exchange rate in the counter-flow type air-water heat exchanger with polyethylene film bags was compared to that of polyethylene film. Heat exchange rate was almost identical at air velocity of 0.5m/s on polyethylene film surface. But, heat exchange rate of heat exchanger with polyethylene film bag was $32{\sim}55KJ/m^2$ hr higher than that of polyethylene film at air velocity of 1.0m/s. 2. Considering the formation of uniform water film and the sufficient heat exchange rate of polyethylene film bags, optimum water flow rate in polyethylene film bags was $3.0{\sim}6.0{\ell}/m^2$ min. 3. The overall heat transfer coefficient of polyethylene film bags was found to be $35.0{\sim}130.0KJ/m^2\;hr\;^{\circ}C$ corresponding to the air velocity ranging 0.5 to 4.0 m/s on polyethylene film surface. And the overall heat transfer coefficient showed almost linearly increasing tendency to the variation of air velocity. 4. Mathematical model to predict air temperature leaving the heat exchanger was developed, resulting in a good agreement between the experimental and predicted values. But, the experimental results were a little lower than predicted. 5. Effectiveness of heat exchanger for the experiment was found to be 0.40~0.81 corresponding to the number of transfer units due to the variation of air velocity ranging 0.6 to 1.7 m/s.

  • PDF

산업용 인버터에 사용되는 압입식 및 압출식 히트싱크의 방열 성능 평가 (Evaluation of Heat Release Performance of Swaged- and Extruded-type Heat Sink Used in Industrial Inverter)

  • 김정현;구민예;이교우
    • 한국산학기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.523-528
    • /
    • 2013
  • 본 실험에서는 산업용 발전 설비에 사용되는 인버터 내부의 압입형과 압출형 두 종류 히트싱크의 방열 성능을 평가하였다. 실험에 사용된 압입형 히트싱크는 62개의 핀을 가지고 있고, 압출형은 38개의 핀을 가지고 있으며 두 히트싱크의 외형의 크기는 같다. 반면 압출형 히트싱크는 핀의 표면에 반경 1mm의 곡률을 주어 전열면적을 압입형과 같게 하였다. 결과적으로 압입형과 압출형 히트싱크는 전체 입력열량에 대해 각각 70.7%, 63.8%를 방열하였다. 입력열량 중 나머지는 자연대류 및 복사를 통해 외부로 방열되었다. 압출형 히트싱크는 단순히 핀의 개수로 보면 압입형 히트싱크보다 40% 감소했지만, 방열양은 6.9% 만 감소하였다. 이는 표면 곡률을 통한 유효 전열면적의 증가와 압출형 히트싱크의 상대적으로 우수한 전열특성의 효과로 판단하였다.

단일채널 내 임계영역 이산화탄소 가열과정의 열유동 특성에 관한 실험적 연구 (Experimental Studies on Thermal-Fluidic Characteristics of Carbon Dioxide During Heating Process in the Near-Critical Region for Single Channel)

  • 최현우;신정헌;최준석;윤석호
    • 설비공학논문집
    • /
    • 제29권8호
    • /
    • pp.408-418
    • /
    • 2017
  • Supercritical carbon dioxide ($sCO_2$) power system is emerging technology because of its high cycle efficiency and compactness. Meanwhile, PCHE (Printed Circuit Heat Exchanger) is gaining attention in $sCO_2$ power system technology because PCHE with high pressure-resistance and larger heat transfer surface per unit volume is fundamentally needed. Thermo-fluidic characteristics of $sCO_2$ in the micro channel of PCHE should be investigated. In this study, heat transfer characteristics of $sCO_2$ of various inlet conditions and cross-sectional shapes of single micro channel were investigated experimentally. Experiment was conducted at supercritical state of higher than critical temperature and pressure. Test sections were made of copper and hydraulic diameter was 1 mm. Convective heat transfer coefficients were measured according to each interval of the channel and pressure drop was also measured. Convective heat transfer coefficients from experimental data were compared with existing correlation. In this study, using measured data, a new empirical correlation to predict near critical region heat transfer coefficient is developed and suggested. Test results of single channel will be used for design of PCHE.

급기 예열 열교환기에서 에칭 표면 특성이 응축 열전달에 미치는 영향에 관한 연구 (A Study on the Effects of Etching Surface Characteristics on Condensation Heat Transfer in Pre-heating Exchanger)

  • 석성철;황승식;최규홍;신동훈;정태용
    • 에너지공학
    • /
    • 제23권2호
    • /
    • pp.217-222
    • /
    • 2014
  • 일반 가정용 보일러의 열효율을 증진시키기 위해서 콘덴싱 보일러에 부착되는 급기 예열 열교환기의 응축 열전달에 대한 실험을 수행하였다. 본 연구에서는 스테인리스의 표면에 대하여 에칭을 이용하여 표면 거칠기를 부과하였다. 그리고 열전달 성능 평가를 위해 대향유동 열교환기를 폴리카보네이트로 제작하였고 원판과 비교 실험을 수행하였다. 그 결과 에칭 처리한 모든 시편의 총괄열전달계수는 원판에 비해 증가하는 것을 확인할 수 있었고, 에칭 시간이 60초인 시편에서 평균 15%까지 증가하였다. 그리고 AFM 장비를 이용하여 표면 특성에 대한 분석을 통하여 열전달 증진 요인에 대해 연구하였다.

원통다관형 열교환기에서 배플인자가 열전달에 미치는 영향 (Effect of baffle parameters on heat transfer in shell-and-tube heat exchangers)

  • 이상천;조영우;남상철
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.185-194
    • /
    • 1997
  • An experimental study has been performed on the effect of baffle parameters on shell -side heat transfer in a conventional shell-and-tube heat exchanger. The baffle spacing distance and the number of baffle were varied to investigate the behavior of unequal baffle spacing correction factor which is appeared in the Bell Delaware method for prediction of the shell-side heat transfer coefficient. It was obvious that heat duties obtained from the experiment significantly deviated from those calculated by the conventional Bell-Delaware method. A new correlation of the unequal baffle spacing correction factor was developed. It was shown that the new correlation improves the accuracy of the Bell-Delaware method considerably. This result may induce the use of the Bell-Delaware method in developing a computer software for design of shell-and-tube heat exchangers.

노즐특성에 따른 MIST-COOLING 열전달에 관한 실험적 연구 (The Effect of Nozzle Characteristics on the Mist-Cooling Heat Transfer)

  • 이진원;강영규;백병준;박복춘
    • 열처리공학회지
    • /
    • 제5권3호
    • /
    • pp.171-178
    • /
    • 1992
  • The effect of nozzle characterristics on the mist-cooling heat transfer was investigated under the various flow conditions. Two different types of twin fluid nozzle were used, one is a $90^{\circ}$ angle tip nozzle with needle and the other is a $90^{\circ}$ angle tip non-needle nozzle. The cooling rate from the heated surface was measured and obtained the boiling curve as a function of surface temperature. An immersion sampling was employed for the measurement of droplet size of the spray. As a result of this experiment, the liquid sheet type nozzle shows better atomization when the mass ratio Mr>2.0, and collects more liquid droplets on the heated surface that results in better cooling effect. It was found that the maximum heat flux and heat transfer coefficient increased with increase in the volumetric flow rate, whereas the maximum heat flux decreased with increase in spray distance. The cooling effect depends upon the amount of collected droplet and droplet size, but it strongly depends upon the amount of collected droplet.

  • PDF

온도 프로파일 가시화를 통한 프랙탈 구조 마이크로채널 히트싱크의 열수력학적 특성 최적화 (Direct Visualization of Temperature Profiles in Fractal Microchannel Heat Sink for Optimizing Thermohydrodynamic Characteristics)

  • 이한솔;곽노균
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.79-84
    • /
    • 2024
  • As microchips' degree of integration is getting higher, its cooling problem becomes important more than ever. One of the promising methods is using fractal microchannel heat sink by mimicking nature's Murray networks. However, most of the related works have been progressed only by numerical analysis. Perhaps such lack of direct experimental studies is due to the technical difficulty of the temperature and heat flux measurement in complex geometric channels. Here, we demonstrate the direct visualization of in situ temperature profile in a fractal microchannel heat sink. By using the temperature-sensitive fluorescent dye and a transparent Polydimethylsiloxane window, we can map temperature profiles in silicon-based fractal heat sinks with various fractal scale factors (a=1.5-3.5). Then, heat transfer rates and pressure drops under a fixed flow rate were estimated to optimize hydrodynamic and thermal characteristics. Through this experiment, we found out that the optimal factor is a=1.75, given that the differences in heat transfer among the devices are marginal when compared to the variances in pumping power. This work is expected to contribute to the development of high-performance, high-efficiency thermal management systems required in various industrial fields.

Experimental study of correlation between aqueous lithium chloride-air temperature difference and mass transfer performance

  • Fatkhur, Rokhmaw;Agung, Bakhtiar;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.195-198
    • /
    • 2011
  • Liquid desiccant material, such as lithium chloride (LiCl) or halide slits are usually used on air conditioning application for controlling the humidity of high Outdoor Air (OA). Solar energy is usually used to heat the liquid in regeneration process of those desiccant. The mass transfer it self is driven by the temperature different between the liquid desiccant and the input air. This experiment study is analyzing the characteristic of the aqueous LiCl-air temperature different in variance specific gravity, especially in range of temperature different using the solar energy as the heat generator. The experiment has done by variating the concentration of the LiCl with specific gravity 1.210 and 1.150. For the comparison the pure water is also used. The result show that the mass transfer rate is increased in every variation as the increases of the temperature different, and the weeker aqueous solution of the LiCl the highest mass transfer coefficient.

  • PDF