DOI QR코드

DOI QR Code

Evaluation of Heat Release Performance of Swaged- and Extruded-type Heat Sink Used in Industrial Inverter

산업용 인버터에 사용되는 압입식 및 압출식 히트싱크의 방열 성능 평가

  • Kim, Jung Hyun (Division of Mechanical Design Engineering, Chonbuk National University) ;
  • Ku, Min Ye (Division of Mechanical Design Engineering, Chonbuk National University) ;
  • Lee, Gyo Woo (Division of Mechanical Design Engineering, Chonbuk National University)
  • 김정현 (전북대학교 기계설계공학부 (친환경기계부품설계연구센터)) ;
  • 구민예 (전북대학교 기계설계공학부 (친환경기계부품설계연구센터)) ;
  • 이교우 (전북대학교 기계설계공학부 (친환경기계부품설계연구센터))
  • Received : 2012.10.19
  • Accepted : 2013.02.06
  • Published : 2013.02.28

Abstract

In this experiment, we investigated the performance of two types of heat sink, swaged- and extruded-type, used in the inverter of industrial electricity generator. The swaged-type heat sink has 62 fins, and the extruded-type has 38 fins having the same dimension as that of the swaged-type. But the extruded-type heat sink maintains the same heat transfer area by the laterally waved surface which has 1 mm in radius. As a result, the swaged- and extruded-type heat sinks released 70.7% and 63.8% of the heat incoming to the heat sink, respectively. The other incoming heat were naturally convected and radiated to the ambient. In spite of 40% decrease in number of fins, the heat release performance of the extruded-type heat sink was lowered only 6.9% than that of the swaged-type. We believe that, this shows the increment of effective heat transfer area by the laterally waved surface of fins and the better heat transfer property of the extruded-type heat sink.

본 실험에서는 산업용 발전 설비에 사용되는 인버터 내부의 압입형과 압출형 두 종류 히트싱크의 방열 성능을 평가하였다. 실험에 사용된 압입형 히트싱크는 62개의 핀을 가지고 있고, 압출형은 38개의 핀을 가지고 있으며 두 히트싱크의 외형의 크기는 같다. 반면 압출형 히트싱크는 핀의 표면에 반경 1mm의 곡률을 주어 전열면적을 압입형과 같게 하였다. 결과적으로 압입형과 압출형 히트싱크는 전체 입력열량에 대해 각각 70.7%, 63.8%를 방열하였다. 입력열량 중 나머지는 자연대류 및 복사를 통해 외부로 방열되었다. 압출형 히트싱크는 단순히 핀의 개수로 보면 압입형 히트싱크보다 40% 감소했지만, 방열양은 6.9% 만 감소하였다. 이는 표면 곡률을 통한 유효 전열면적의 증가와 압출형 히트싱크의 상대적으로 우수한 전열특성의 효과로 판단하였다.

Keywords

References

  1. E. Santi, A. Caiafa, X. Kang, J. L. Hudgins, P. R. Palmer, D. Goodwine, and A. Monti, "Temperature Effects on Trench-Gate Punch-Through IGBTs," IEEE Trans. on Industry Applications, Vol. 40, No. 2, pp. 472-482, 2004. DOI: http://dx.doi.org/10.1109/TIA.2004.824513
  2. T. H. Kim, K. H. Do, B. I. Choi, Y. S. Han, and M. B. Kim, "Development of a Cooling System for a Concentrating Photovoltaic Module," Trans. of the KSME(B), Vol. 35, No. 6, pp. 551-560, 2011. https://doi.org/10.3795/KSME-B.2011.35.6.551
  3. J. H. Kim, J. H. Yun, and C. S. Lee, "An Experimental Study on the Thermal Resistance Characteristics for Various Types of Heat Sinks," SAREK, Vol. 14, No. 8, pp. 676-682, 2002.
  4. C. S. Jeon, Y. K. Kim, J. Y. Lee, and S. H. Song, "Cooling of an In-line Array of Heat Sources with Air-Cooled Heat Sinks," Trans. of the KSME(B), Vol. 2, No. 2, pp. 229-234, 1998.
  5. J. W. Lee, "Design of a Heat Dissipation System for the 400kW IGBT Inverter," The Trans. of the KIPE, Vol. 9, No. 4, pp. 350-355, 2004.
  6. S. Lee, "Optimum Design and Selection of Heat Sinks," IEEE Trans. Components, Packaging and Manufacturing Technology-Part A, Vol. 18, No. 4, pp. 812-817, 1995. DOI: http://dx.doi.org/10.1109/95.477468
  7. M. S. Ko, J. H. Lee, S. J. Oh, H. S. Cho, and T. B. Seo, "Cooling Performance of LED Head Lamp with Heat Sink and Cooling Fan," Trans. of the KSME(B), Vol. 33, No. 12, pp. 947-951, 2009. https://doi.org/10.3795/KSME-B.2009.33.12.947
  8. H. Shaukatullah, W. R. Storr, B. J. Hansen, and M. A. Gaynes, "Design and Optimization of Pin Fin Heat Sinks for Low Velocity Applications," IEEE Trans. on Components, Packaging and Manufacturing Technology-Part A, Vol. 19, No. 4, pp. 486-494, 1996. DOI: http://dx.doi.org/10.1109/95.554929
  9. K. J. Riu, C. W. Park, H. W. Kim, and C. S. Jang, "Cooling Characteristics of a Strip Fin Heat Sink," Trans. of the KSME(B), Vol. 29, No. 1, pp. 16-26, 2005. https://doi.org/10.3795/KSME-B.2005.29.1.016
  10. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, "Introduction to Heat Transfer," 5th ed., John Wiley and Sons, 2006.