• Title/Summary/Keyword: Heat Tracing

Search Result 46, Processing Time 0.03 seconds

Development and Verification of Zigbee-Based Monitoring and Control System for Electric Heat Tracing (Electric Heat Tracing을 위한 Zigbee 기반 통합 감시제어 시스템의 개발 및 검증)

  • Park, Sung-Woo;Park, Sun-Eng
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.12
    • /
    • pp.1395-1402
    • /
    • 2015
  • An electric heat tracing system manages the temperature of pipes used in a plant. We propose a Zigbee-based wireless system so called the TESCON(: TEmperature Sensing and CONtrol) to monitor and control the electric heat tracing system in an integrated way. Simulations have been done to analyze the performance of the TESCON system. The performance of the TESCON system is validated by obtaining similar results via testbed operation. We also suggest an extension method of the TESCON system based on the hierarchical tree topology by adopting techniques such as network partition, channel reuse and frame aggregation.

NUMERICAL ANALYSIS FOR UNSTEADY THERMAL STRATIFIED FLOW WITH HEAT TRACING IN A HORIZONTAL CIRCULAR CYLINDER

  • Jeong, Ill-Seok;Song, Woo-Young;Park, Man-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.304-309
    • /
    • 1997
  • A method to mitigate the thermal stratification flow of a horizontal pipe line is proposed by heating external bottom of the pipe with electrical heat tracing. Unsteady two dimensional model has been used to numerically investigate an effect of the external Denting to the thermally stratified flow. The dimensionless governing equations are solved by using the control volume formulation and SIMPLE algorithm. Temperature distribution, streamline profile and Nusselt numbers of fluids and pipe walls with time are analyzed in case of externally heating condition. no numerical result of this study shows that the maximum dimensionless temperature difference between the hot and the cold sections of pipe inner wall is 0.424 at dimensionless time 1,500 ann the thermal stratification phenomena is disappeared at about dimensionless time 9,000. This result means that external heat tracing can mitigate the thermal stratification phenomena by lessening $\Delta$ $T_{ma}$ about 0.1 and shortening the dimensionless time about 132 in comparison with no external heat tracing.rnal heat tracing.

  • PDF

An Analysis of Unsteady 2-D Heat Transfer of the Thermal Stratification Flow inside Horizontal Pipe with Electrical Heat Tracing (Heat Tracing이 있는 수평배관 내부 열성층 유동의 비정상 2차원 열전달 해석)

  • 정일석;송우영
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.119-128
    • /
    • 1997
  • A method to mitigate the thermal stratification flow of a horizontal pipe line is proposed by heating external bottom of the pipe with electrical heat tracing. Unsteady two dimensional model has been used to numerically investigate an effect of the external heating on the thermal stratification flow. The dimensionless governing equations are solved by using the control volume formulation and SIMPLE algorithm. Temperature distribution, streamline profile and Nusselt number distributions are analyzed under heating conditions. The numerical results of this study show that the maximum dimensionless temperature difference between hot and cold sections of the inner wall of pipe is 0.424 at dimensionless time of 1,500 and the thermal stratification phenomenon disappears at about dimensionless time of 9,000.

  • PDF

Heat Losses from the Receivers of a Multifaceted Parabolic Solar Energy Collecting System

  • Seo, Taebeom;Ryu, Siyoul;Kang, Yongheock
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1185-1195
    • /
    • 2003
  • Heat losses from the receivers of a dish-type solar energy collecting system at the Korea Institute of Energy Research (KIER) are numerically investigated. It is assumed that a number of flat square mirrors are arranged on the parabolic dish structure to serve as a reflector. Two different types of receivers, which have conical and dome shapes, are considered for the system, and several modes of heat losses from the receivers are thoroughly studied. Using the Stine and McDonald model convective heat loss from a receiver is estimated. The Net Radiation Method is used to calculate the radiation heat transfer rate by emission from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method is used to predict the radiation heat transfer rate from the reflector to the receiver. Tracing the photons generated, the reflection loss from the receivers can be estimated. The radiative heat flux distribution produced by a multifaceted parabolic concentrator on the focal plane is estimated using the cone optics method. Also, the solar radiation spillage around the aperture is calculated. Based on the results of the analysis, the performances of two different receivers with multifaceted parabolic solar energy collectors are evaluated.

High Fidelity Calculation of Thermal Load in a Satellite Orbit (고정확도의 인공위성 궤도 열하중 계산 기법)

  • Kim, Min-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.898-906
    • /
    • 2017
  • This paper discusses the efficient high fidelity calculation of external thermal loads of a spacecraft on its orbit. Thermal loads to a spacecraft consist of three major components, direct solar radiation, earth reflection of solar rays, and earth irradiation. With the assumption that both earth reflection and earth emission are diffuse, thermal loads from earth surface divided into pieces of segments to satellite surfaces are individually calculated and summed over. By using analytical integration of both reflected and emitted heat load by earth, high rate of numerical convergence is achieved and the results are even exactly calculated in special cases. Moreover, KD tree ray tracing is employed in the calculation of thermal load to determine whether the radiated ray is obstructed or not by satellite structure.

A study on the radiative heat transfer analysis in a laminar diffusion flame (층류확산화염의 출사열전달 해석에 관한 연구)

  • 이도형;최병륜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.48-55
    • /
    • 1989
  • The purpose of present study is to evaluate both the radiative heat loss from a flame and the local formation and oxidation rate of soot. The present paper describes a comprehensive mathematical model to deal with combustion and radiative heat transfer simultaneously. The involved radiative heat transfer model was based on the "heat ray tracing method" originally proposed by Hayasaka et al.. Some predicted results were compared with the experiments.periments.

  • PDF

A Study on GUI Program Development for Steam Tracing System Selection (스팀 트레이싱 시스템 사양 선정 GUI 프로그램 개발에 관한 연구)

  • Choi, Yo Han;Lee, Kwang-Hee;Lee, Chul-Hee;Park, Gwang Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.94-105
    • /
    • 2021
  • A graphical user interface (GUI) program for steam tracing system selection was developed by using a theoretical model. We derived the model on the basis of the one-dimensional heat transfer theory of conduction and convection through a composite wall. Computational fluid dynamics (CFD) and experiments were performed for validation at steam temperatures of 120.4[℃] and 158.9[℃]. The temperature of a pipe's outer surface obtained through CFD matched well with that predicted by the proposed model for both conditions. By contrast, the experiment results showed a small error at 120.4[℃] and a large error at 158.9[℃] because of the melting of the heat transfer compound and water phase transition. Thus, the steam temperature range of the proposed model is below 120.4[℃].

Solar Flux Calculation for Heat Transfer Modeling of Volumetric Receivers (체적식 흡수기의 열전달 모델링을 위한 태양 열유속 계산)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.223-228
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer modeling. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15 mm charmel length for the charmel radius smaller than 1.5 mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the charmel entrance region is overpredicted while the light penetrates more deeply into the charmel. The developed method will help understand the solar flux when only a part of concentrated light is of interest. Furthermore, if the presented results are applied for heat transfer modeling of multi-channeled volumetric solar receivers, one could examine effects of receiver charmel properties and shape on air temperature profiles.

  • PDF