• Title/Summary/Keyword: Heat Storage Capacity

Search Result 186, Processing Time 0.024 seconds

Preparation and Characterization of Glass-ceramics in MgO-${Al_2}{O_3}$-$SiO_2$ Glass (MgO-${Al_2}{O_3}$-$SiO_2$계 결정화유리의 제조 및 물성평가)

  • 손성범;최세영
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.604-611
    • /
    • 2000
  • Glass-ceramics containing a cordierite (2MgO-2Al2O3-5SiO2) as a main crystal phase was prepared from MgO-Al2O3-SiO2 system glass through a controlled 2-step heat treatment for the application to magnetic memory disk substrate for higher storage capacity. Parent glasses prepared with addition of CeO2 as a fulx and TiO2 as a nucleating agent were crystallized by a 2-step heat treatment i.e. nucleation and crystal grwoth. Then the maximum nucleation and crystal growth rates were investigated and several properties such as bending strength, surface hardness and surface roughness were also studied for heat treated glass. As a result, only a $\alpha$-cordierite was precipitated as a main crystal phase for all heat treatment conditions and the maximum nucleation and crystal growth rates were 2.4$\times$109/㎣.hr at 80$0^{\circ}C$ and 0.3${\mu}{\textrm}{m}$/hr at 915$^{\circ}C$ respectively. After being nucleated at 80$0^{\circ}C$ for 5 hours and then crystallized at 915$^{\circ}C$ for 1 hour, the heat treated glass had a crystal volume fraction of 17.6% and crystal size fo 0.3${\mu}{\textrm}{m}$, and showed the optimum properties for the application to magnetic memory disk substrates as follows. ; Bending strength of 192 MPa, Vidkers hardness of 642.1kgf/$\textrm{mm}^2$, and surface roughness of 27$\AA$.

  • PDF

Influence of Heat Treatment on Separators for Lithium Secondary Batteries (리튬 이차전지용 분리막에 대한 열처리의 영향)

  • Lee, Sae-Me;Ryu, Sang-Woog
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.93-97
    • /
    • 2012
  • Heat treatment effect of polyethylene (PE) separators was investigated after storage at 80, 100 and $120^{\circ}C$ for 1 h. All the samples showed enhanced tensile strength and modulus after heat treatment, but thermal shrinkage up to 15% was observed in PE films having newly formed dimple structure on the surface of fiber after annealed at 100 and $120^{\circ}C$. Although there was 5% of thermal shrinkage after annealing at $80^{\circ}C$, no such serious changes in PE fiber was observed. Furthermore, the separator was found to have enhanced cell performance with 1.3 and 2.3 times higher tensile strength and modulus after heat treatment at $80^{\circ}C$ for 1 h.

Development of a Tool for Predicting the Occurrence Time of BLEVE in Small LPG Storage Tanks (LPG소형저장탱크 BLEVE 발생 시점 예측 툴 개발)

  • Chae, Chung Keun;Lee, Jae Hun;Chae, Seung Been;Kim, Yong Gyu;Han, Shin Tak
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.74-83
    • /
    • 2020
  • In Korea, about 110,000 LPG small storage tanks of less than three tons have been installed in restaurants, houses and factories, and are used as LPG supply facilities for cooking, heating and industrial use. In the case of combustible liquefied gas storage tanks, the tank may rupture due to the temperature increase of the tank steel plate (approximately 600℃) even when the safety valve is operating normally, causing large-scale damage in an instant. Therefore, in the event of a fire near the LPG small storage tank, it is necessary to accurately predict the timing of the BLEVE(Boiling Liquid Expanding Vapour Explosion) outbreak in order to secure golden time for lifesaving and safely carry out fire extinguishing activities. In this study, we have first investigated the results of a prior study on the prediction of the occurrence of BLEVE in the horizontal tanks. And we have developed thermodynamic models and simulation program on the prediction of BLEVE that can be applied to vertical tanks used in Korea, have studied the effects of the safety valve's ability to vent, heat flux strength of external fires, size of tanks, and gas remaining in tanks on the time of BLEVE occurrence and have suggested future utilization measures.

Synthesis of Carbon Coated Nickel Cobalt Sulfide Yolk-shell Microsphere and Their Application as Anode Materials for Sodium Ion Batteries (카본 코팅된 니켈-코발트 황화물의 요크쉘 입자 제조 및 소듐 이온 배터리의 음극 소재 적용)

  • Hyo Yeong Seo;Gi Dae Park
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.387-393
    • /
    • 2023
  • Transition metal chalcogenides are promising cathode materials for next-generation battery systems, particularly sodium-ion batteries. Ni3Co6S8-pitch-derived carbon composite microspheres with a yolk-shell structure (Ni3Co6S8@C-YS) were synthesized through a three-step process: spray pyrolysis, pitch coating, and post-heat treatment process. Ni3Co6S8@C-YS exhibited an impressive reversible capacity of 525.2 mA h g-1 at a current density of 0.5 A g-1 over 50 cycles when employed as an anode material for sodium-ion batteries. However, Ni3Co6S8 yolk shell nanopowder (Ni3Co6S8-YS) without pitch-derived carbon demonstrated a continuous decrease in capacity during charging and discharging. The superior sodium-ion storage properties of Ni3Co6S8@C-YS were attributed to the pitch-derived carbon, which effectively adjusted the size and distribution of nanocrystals. The carbon-coated yolk-shell microspheres proposed here hold potential for various metal chalcogenide compounds and can be applied to various fields, including the energy storage field.

A study on the relationship between the thermal properties of rock and the enviroment in underground spaces (암반 열물성과 지하공간 환경분석 연구)

  • Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.335-341
    • /
    • 1996
  • This fundamental study analyzes the relationship between rock thermal properties and psychrometric properties in underground space and has a ultimate goal to develope technologies for predicting major environmental variables. The study is divided into 2 subjects (1) developement of a basic model for predicting temperature and humidity, (2) analysis of the validity of the model through application to a local underground storage space for military supplies. The basic model is built for the network of tunnel-shaped underground spaces. The model takes into account rock thermal properties and changes in moisture content in the air due to condensation/evaporation on the rock surface. Using lumped-parameter analytical method, heat flux from or to the surrounding rock is calculated and then the psychrometric properties(air quantity, pressure, temperature, humidity) are estimated through network simulation. The model can be utilized regardless of the tunnel type. The study site is a local storage space built in rock, mainly granite gneiss and quartz-porphyry. It is a U-shaped tunnel, 593.5m long and 6x6.5m wide. Relative humidity inside has to be strictly controlled under 55% to avoid erosion of a certain types of supplies stored in 6 chambers with the capacity of 300~1.000 ton. The thermal conductivity varies between 2.734 and 2.779W/m$^{\circ}C$ and the thermal diffusivity is in the range of 1.119 and $1.152{\times}10^{-6}\;m^2/s$ the specific heat between 910 and $920\;J/kg^{\circ}C$. Relative errors of the predicted values of dry/wet temperature and relative humidity are 0.8~3.0%, 0~7.5% and 0~7.0%, respectively. Apparent errors associated with the rock surface temperature seems to be partly due to the intrinsic limitations in the infrared thermometer used in this study.

  • PDF

Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea

  • Lee, Jongyoul;Kim, Inyoung;Ju, HeeJae;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.1-19
    • /
    • 2020
  • Based on the current high-level radioactive waste management basic plan and the analysis results of spent nuclear fuel characteristics, such as dimensions and decay heat, an improved geological disposal concept for spent nuclear fuel from domestic nuclear power plants was proposed in this study. To this end, disposal container concepts for spent nuclear fuel from two types of reactors, pressurized water reactor (PWR) and Canada deuterium uranium (CANDU), considering the dimensions and interim storage method, were derived. In addition, considering the cooling time of the spent nuclear fuel at the time of disposal, according to the current basic plan-based scenarios, the amount of decay heat capacity for a disposal container was determined. Furthermore, improved disposal concepts for each disposal container were proposed, and analyses were conducted to determine whether the design requirements for the temperature limit were satisfied. Then, the disposal efficiencies of these disposal concepts were compared with those of the existing disposal concepts. The results indicated that the disposal area was reduced by approximately 20%, and the disposal density was increased by more than 20%.

Economic analysis of Frequency Regulation Battery Energy Storage System for Czech combined heat & power plant (체코 열병합발전소 주파수조정용 배터리에너지저장장치 경제성 분석)

  • KIM, YuTack;Cha, DongMin;Jung, SooAn;Son, SangHak
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-78
    • /
    • 2020
  • According to the new climate change agreement, technology development to reduce greenhouse gases is actively conducted worldwide, and research on energy efficiency improvement in the field of power generation and transmission and distribution is underway [1,2]. Economic analysis of the operation method of storing and supplying surplus electricity using energy storage devices, and using energy storage devices as a frequency adjustment reserve power in regional cogeneration plants has been reported as the most profitable operation method [3-7]. Therefore, this study conducted an economic analysis for the installation of energy storage devices in the combined heat and power plant in the Czech Republic. The most important factor in evaluating the economics of battery energy storage devices is the lifespan, and the warranty life is generally 10 to 15 years, based on charging and discharging once a day. For the simulation, the ratio of battery and PCS was designed as 1: 1 and 1: 2. In general, the primary frequency control is designed as 1: 4, but considering the characteristics of the cogeneration plant, it is set at a ratio of up to 1: 2, and the capacity is simulated at 1MW to 10MW and 2MWh to 20MWh according to each ratio. Therefore, life was evaluated based on the number of cycles per year. In the case of installing a battery energy storage system in a combined heat and power plant in the Czech Republic, the payback period of 3MW / 3MWh is more favorable than 5MW / 5MWh, considering the local infrastructure and power market. It is estimated to be about 3 years or 5 years from the simple payback period considering the estimated purchase price without subsidies. If you lower the purchase price by 50%, the purchase cost is an important part of the cost for the entire lifetime, so the payback period is about half as short. It can be, but it is impossible to secure profitability through the economy at the scale of 3MWh and 5MWh. If the price of the electricity market falls by 50%, the payback period will be three years longer in P1 mode and two years longer in P2 and P3 modes.

Thermal Performance of the Show-Case Cooler Using Ice Slurry Type Storage System (아이스슬러리형 축냉시스템을 이용한 쇼케이스 냉각장치의 열적성능에 관한 실험적 연구)

  • Lee, Dong-Won;Kim, Jeong-Bae
    • Journal of Energy Engineering
    • /
    • v.20 no.1
    • /
    • pp.26-29
    • /
    • 2011
  • A promising alternative technology is the potential use of ice slurries as a secondary refrigerant in conventional cooling process. Ice slurries behave almost like a liquid and can be pumped through pipes although the energy capacity of ice slurries per unit volume is considerably higher than that for chilled water or brine due to the latent heat capacity of the ice particles. To give the basic data for the design of cooling systems using ice slurries, experimental study has been conducted to find out the performance of the cooling coil of show-case with ice slurries. Despite the fact that ice slurries entering the cooling coil had at least $5^{\circ}C$ higher temperature than that of R22, it was still capable of providing a similar cooling performance than that obtained with R22.

Performance Comparison of Flooded Seawater Cooling System with respect to Heat Sink Temperature (열원수 온도에 따른 만액식 해수냉각시스템의 성능 비교)

  • Yoon, Jung-In;Choi, Kwang-Hwan;Son, Chang-Hyo;Kang, In-Ho;Kim, Chung-Lae;Seol, Sung-Hoon
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.91-96
    • /
    • 2016
  • A fleet consists of a main vessel, light vessels and carrying vessels for purse seine fishery. Carrying vessels contains fish storages to maintain freshness of catches. Currently most carrying vessels applies the cooling system using plain ice though accompanied various shortcomings. Seawater cooling system directly chilling seawater are now in use on carrying vessels in some developed countries to make up for these shortcomings and maximize advantages. This research deals with necessity of seawater cooling systems and establishes system criteria using Aspentech HYSYS program, prior to an experiment of compact-scale seawater cooling system which now in progress of manufacture. Performance comparison on condensation capacity, mass flow rate of working fluid, compressor power input, pump power input and others of the seawater cooling system applying a flooded evaporator is conducted with respect to the temperature of surface seawater varying according to seasons. The result presents that mass flow rate circulating the system is increased about 16.7% as the temperature of surface seawater increases. At the same condition, condensation capacity and compressor input work also increase about 9.8% and 91.2%, respectively.

Application of Hierarchically Porous Fe2O3 Nanofibers for Anode Materials of Lithium-ion Batteries (계층적 다공구조를 갖는 Fe2O3 나노섬유의 리튬 이차전지 음극소재 적용)

  • Jo, Min Su;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.267-273
    • /
    • 2019
  • Hierarchically porous $Fe_2O_3$ nanofibers with meso- and macro- pores are designed and synthesized by electrospinning and subsequent heat-treatment. The macro pores are generated by selectively decomposition of polystyrene as a dispersed phase in the as-spun fibers containing $Fe(acac)_3$/polyacrylonitrile continuous phases during heat-treatment. Additionally, meso-pores formed by evaporation of infiltrated water vapor during electrospinning process interconnected the macro-pores and results in the formation of hierarchically porous $Fe_2O_3$ nanofibers. The initial discharge capacity and Coulombic efficiency of the hierarchically porous $Fe_2O_3$ nanofibers at a current density of $1.0A\;g^{-1}$ are $1190mA\;h\;g^{-1}$ and 79.2%. Additionally, the discharge capacity of the nanofibers is $792mA\;h\;g^{-1}$ after 1,000 cycles. The high structural stability and morphological benefits of the hierarchically porous $Fe_2O_3$ nanofibers resulted in superior lithium ion storage performance.