• Title/Summary/Keyword: Heat SinK

Search Result 160, Processing Time 0.025 seconds

Behavior of Geosynthetic Reinforced Wall with Heat Induce Drainage Method During Rainfall (열유도 토목섬유 배수공법이 적용된 보강토 옹벽의 강우시 거동 특성)

  • Shin, Seung-min;Sin, Chun-won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • This paper presents the results of a scale model test to the effect of heat exchanger drainage method in retaining wall of weathered granite soil. Purpose to rise in the temperature of the heat wires inside the weathered granite soil is preventing the collapse of the retaining wall and drainage smoothly moved to the drainage layer. Especially using a spray gun to simulate the rainfall since the rainfall drainage work is important for the rainfall effect on soil, find the difference about displacement of the retaining wall, change of volume water content, drainage, earth pressure and change in the strain of the geosynthetic was effected to heat exchanger within the soil. The result from applying the heat exchanger method decreased the earth pressure and displacement of the wall and increased drainage of water.

Three-dimensional flow characteristics and heat transfer to a circular cylinder with a hot circular impinging air jet (원형 실린더에 충돌하는 고온 제트의 3차원 유동 특성 및 열전달)

  • Hong, Gi-Hyeok;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.285-293
    • /
    • 1997
  • Numerical calculations has been performed for the flow and heat transfer to a circular cylinder from a hot circular impinging air jet. The characteristics of the flow and heat transfer are investigated and compared with the two-dimensional flow. The present study lays emphasis on the investigation on the flow and heat transfer of the three-dimensionality. The effects of the buoyancy force and the size of jet are also studied. The noticeable difference between the three and the two-dimensional cases is that there is axial flow of low temperature into the center-plane of the cylinder from the outside in the recirculation region. Local Nusselt number over the cylinder surface has higher value for the large jet as compared with that of the small jet since the energy loss of hot jet to the ambient air decreases with increase of the jet size. As buoyancy force increases the flow accelerates so that the period of cooling by the ambient air is reduced, which results in higher local Nusselt number over the surface.

A Study on Development Potential of Shallow Geothermal Energy as Space Heating and Cooling Sources in Mongolia (몽골의 천부 지열에너지(냉난방 에너지)개발 가능성에 관한 연구)

  • Hahn, Jeong-Sang;Yoon, Yun-Sang;Yoon, Kern-Sin;Lee, Tae-Yul;Kim, Hyong-Soo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.36-47
    • /
    • 2012
  • Time-series variation of groundwater temperature in Mongolia shows that maximum temperature is occured from end of October to the first of February(winter time) and minimum temperature is observed from end of April to the first of May(summer time). Therefore ground temperature is s a good source for space heating in winter and cooling in summer. Groundwater temperatures monitored from 3 alluvial wells in Ulaabaatar at depth between 20 and 24 m are $(4.43{\pm}0.8)^{\circ}C$ with average of $4.21^{\circ}C$ but mean annual ground temperature(MAGT) at the depth of 100 m in Ulaanbaatar was about $3.5{\sim}6.0^{\circ}C$. Bore hole length required to extract 1 RT's heat energy from ground in heating time and to reject 1 RT's heat energy to ground in summer time are estimated about 130 m and 98 m respectively. But in case that thermally enhanced backfill and U tube pipe placement along the wall are used, the length can be reduced about 25%. Due to low MAGT of Ulaabaatar such as $6^{\circ}C$, the required length of GHX in summer cooling time is less than the one of winter heating time. Mongolia has enough available property, therefore the most cost effective option for supplying a heating energy in winter will be horizontal GHX which absorbs solar energy during summer time. It can supply 1 RT's ground heat energy by 570 m long horizontally installed GHX.

Investigation of EDM Characteristics of Nickel-based Heat Resistant Alloy

  • Kang, Sin-Ho;Kim, Dae-Eon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1475-1484
    • /
    • 2003
  • The EDM processing characteristics of one of the nickel-based heat resistant alloys, Hastelloy- X, were investigated under the various EDM conditions and analyzed in terms of surface integrity. This alloy is commonly used as a material for the hot gas path component of gas turbines and it is difficult to machine by conventional machining methods. The primary EDM parameter which was varied in this study were the pulse-on time. Since the pulse-on time is one of the main factors that determines the intensity of the electrical discharge energy, it was expected that the machining ratio and the surface integrity of the specimens would be proportionally dependent on the pulse-on duration. However, experimental results showed that MRR (material removal rate) and EWR (electrode wear rate) behaved nonlinearly with respect to the pulse duration, whereas the morphological and metallurgical features showed rather a constant trend of change by the pulse duration. In addition the heat treating process affected the recast layer and HAZ to be recrystallized but softening occurred in recast layer only. A metallurgical evaluation of the microstructure for the altered material zone was also conducted.

Analysis of Anisotropic Turbulent Heat Transfer in Nuclear Fuel Bundles (핵연료 집합체내의 비등방성 난류 열전달에 관한 해석적 연구)

  • Kim, Sin;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.35-46
    • /
    • 1988
  • The prediction of clad surface temperatures is important to the design and the safety anlaysis of nuclear reactor. The accurate prediction requires the detailed knowledge of the flow structure and heat transfer, which is complicate due to anisotropic turbulent phenomena. A two-equation model including anisotropic eddy viscosity model is applied to forecast the velocity distribution. And the temperature field is calculated with uniform wall heat flux. The Galerkin's weighted residual finite element method has been used to calculate the turbulent quantities right up to the wall. The numerical results show good agreement with available data and that turbulence anisotropy strongly affects on the mean flow and thus the temperature field. And Nu-P/D correlation is established for sodium coolant in close-packed equilateral triangular bundle in the P/D range of 1.05 to 1.30.

  • PDF

The Effect of Wake-Induced Periodic Unsteadiness on Heat Transfer in the Transitional Boundary Layer Around NACA0012 Airfoil (주기적인 통과후류가 NACA0012 익형 표면에서의 천이 경계층 열전달에 미치는 영향)

  • Jeong, Ha-Seung;Lee, Jun-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.645-652
    • /
    • 2001
  • Heat transfer data are presented which describe characteristics of the transitional thermal boundary layers on the NACA0012 airfoil with upstream wakes. The wakes are generated periodically by circular cylindrical rods which rotate around the airfoil like a squirrel cage. The unsteady wakes simulate those produced by the upstream rotating blade rows in axial turbomachines. The pressure or suction side of the airfoil is also simulated according to the rotating direction of circular rods. As the Reynolds number and the number of rotating rods increase, the boundary layer transition occurs earlier and the Nusselt number increases. The difference of heat transfer coefficient is less on the pressure side than on the suction side. At a constant Reynolds number, the Nusselt number is larger and smaller, respectively, before and after transition as the Strouhal number increases.

Study on Chip on Chip Technology for Minimizing LED Driver ICs (LED Driver ICs칩의 소형화를 위한 Chip on Chip 기술에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.131-134
    • /
    • 2016
  • This research was analyzed thermal characteristics that was appointed disadvantage when smart LED driver ICs was packaged and we applied extracted thermal characteristics for optimal layout design. We confirmed reliability of smart LED driver ICs package without additional heat sink. If the package is not heat sink, we are possible to minimize package. For extracting thermal loss due to overshoot current, we increased driver current by two and three times. As a result of experiment, we obtained 22 mW and 49.5 mW thermal loss. And we obtained optimal data of 350 mA driver current. It is important to distance between power MOSFET and driver ICs. If thhe distance was increased, the temperature of package was decreased. And so we obtained optimal data of 3.7 mm distance between power MOSFET and driver ICs. Finally, we fabricated real package and we analyzed the electrical characteristics. We obtained constant 35 V output voltage and 80% efficiency.

Optimum Pumping Rates of Ground-Water Heat Pump System Using Groundwater or Bank Infilterated Water (강변여과수와 천부 지하수를 이용하는 지하수 열펌프시스템의 적정유량)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Jeon, Jae-Soo;Kim, Hyong-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.833-841
    • /
    • 2007
  • The groundwater heat pump system(GWHP) is one of the most efficient ground source heat pump system(GSHP) which uses low grade and shallow geothermal energy for cooling and heating purpose. The GWHP system shall be designed properly based on peak block load performance and optimum pumping rate of groundwater comparable to ground coupled heat pump system(GCHP). The optimum pumping rate depends on groundwater temperature at a specific site, size of plate heat exchanger, and total head loss occurred by whole system comprising pumps and pipings. The required optimum flow rates of the system per RT are ranged from 3.8 to 9.8lpm being less than the typical building loop flow of 9.5 to 11.4lpm.

The Effect of Forming Parameter on Mechanical Properties in Hot Bending Process of Boron Steel Sheet (보론강판의 열간 벤딩 공정에서 성형인자가 기계성질에 미치는 영향)

  • Kwon, K.Y.;Sin, B.S.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.203-209
    • /
    • 2010
  • In the hot press forming process (HPF), a martensitic structure is obtained by controlling the cooling rate when cooling a boron sheet that is heated up to over $900^{\circ}C$. The HPF process has various advantages such as the improvement in formability and material properties and minimal spring back of the deformed materials. The factors related to the cooling rate depend on the heat transfer characteristics between heated materials and dies. Therefore, in this study, the cooling rate is controlled by adjusting the heat transfer coefficient of the material at the pressing process. And, the mechanical properties and microstructure of the deformed material is demonstrated during the HPF process where cold dies are used to form the heated steel plate. This is achieved by varying the major forming conditions that control the cooling rate regarded as the most important process parameter.

Treatment of morbid leukorrhea with Hyungsang Medicine (대하증(帶下症)의 형상의학적 치료)

  • Kim, Hye-Kyung;Kang, Kyung-Hwa;Lee, Yong-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.539-542
    • /
    • 2007
  • After analyzing the cases of treating female patients troubled with morbid leukorrhea, the writer drew the conclusions as follows. The shapes of patients with morbid leukorrhea show a large number of shapes of Gi type, Sin type or being inclined to be vigorous Gi, to have depressive syndrome due to disorder of Gi, to be Fire's nature flared upward, to become retention of phlegm and fluid, to become retention of Gi or to become retention of heat, or San syndromes. Accompanied syndromes of morbid leukorrhea appear over the body of upper, middle or lowe portion. In lower cho, the symptoms are menopathy, menstrual irregularities, menstrual irregularities, oligomenorrhea, itching of external genitals, San syndromes, infertility, lumbago which are connected with uterus. And in the middle cho, those are indigestion, nausea, distress in the stomach, vomiting, swallowing acid connected with digestive organs. And also in the upper cho, globus hystericus, chest distress, headache, dizziness, neck stiffness, heat in the upper, pimples connected with upper cho are appeared. Among the prescriptions of treatment for morbid leukorrhea, Ijintang was applied with the widest range of all. Besides that there were mainly prescribed for symptoms such as Gamisachil-tang, Haenggihyangso-san, Gamigwibi-tang, hyangsapyeongwi-san, Onkyung-tang, Banchong-san, Yongdamsagan-tang, Sogampaedok-san, Ojeok-etc.