• 제목/요약/키워드: Heat Recovery Steam Generator(HRSG)

검색결과 57건 처리시간 0.02초

Horizontal drum type HRSG(Heat Recovery Steam Generator)의 동특성 해석 (The analysis of dynamic behavior for horizontal drum type HRSG)

  • 이치환;김성호;김종현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.645-650
    • /
    • 2000
  • This dynamic analysis is performed about shutdown, load controlled and temperature controlled startup operating characteristics of the Horizontal drum type HRSG. This analysis was performed by constructing a dynamic model of the plant and running it through the appropriate.

  • PDF

열회수를 고려한 소형 증기분사 가스터빈 시스템 해석 (Analysis of a small steam injected gas turbine system with heat recovery)

  • 김동섭;조문기;고상근;노승탁
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.996-1008
    • /
    • 1997
  • This paper describes a methodology and results for the analysis of a small steam injected gas turbine cogeneration system. A performance analysis program for the gas turbine engine is utilized with modifications required for the model of steam injection and the heat recovery steam generator (HRSG). The object of simulation is a simple cycle gas turbine engine under development which adopts a centrifugal compressor. The analysis is based on the off-design operation of the gas turbine and the compressor performance map is utilized. Analyses are carried out with the injection ratio as the main parameter. The effect of steam injection on the power and efficiency of gas turbine and cogeneration capacity is investigated. Also presented is the variation in the main operating parameters inside the HRSG. Remarkable reduction in NOx generation by steam injection is confirmed. In addition, it is observed that for the 100% power operation the temperature of the cooled first nozzle blade decreases by 100.deg. C at full steam injection, which seems to have a favorable effect on the engine life time.

배열회수장치의 유동특성에 관한 수치적 연구 (NUMERICAL STUDY ON FLOW CHARACTERISTIC IN THE HEAT RECOVERY STEAM GENERATOR)

  • 최훈기;유근종;신병주;김철환
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.17-23
    • /
    • 2010
  • Performance improvements of the heat recovery steam generator(HRSG) can be achieved by improving the flow distribution of exhaust gases for a various type of different equipments. A number of design parameters are systematically investigated and their effects on an index of velocity deviation established. The parameters include the three shape of the transition duct and the wide range of the guide vane angles. The numerical results clearly reveal feature of the flow pattern in the transition duct, velocity deviation and pressure drop at tube bank part.

Performance Analysis of a Triple Pressure HRSG

  • Shin, Jee-Young;Son, Young-Seok;Kim, Moo-Geun;Kim, Jae-Soo-;Jeon, Yong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1746-1755
    • /
    • 2003
  • Operating characteristics of a triple pressure reheat HRSG are analyzed using a commercial software package (Gate Cycle by GE Enter Software). The calculation routine determines all the design parameters including configuration and area of each heat exchanger. The off-design calculation part has the capability of simulating the effect of any operating parameters such as power load, process requirements, and operating mode, etc., on the transient performance of the plant. The arrangement of high-temperature and intermediate-temperature components of the HRSG is changed, and its effect on the steam turbine performance and HRSG characteristics is examined. It is shown that there could be a significant difference in HRSG sizes even though thermal performance is not in great deviation. From the viewpoint of both economics and steam turbine performance, it should be carefully reviewed whether the optimum design point could exist. Off-design performance could be one of the main factors in arranging components of the HRSG because power plants operate at various off-design conditions such as ambient temperature and gas turbine load, etc. It is shown that different heat exchanger configurations lead to different performances with ambient temperature, even though they have almost the same performances at design points.

열회수 증기발생기와 증기터빈 시스템의 동적 거동 해석 (Analysis of Dynamic Behavior of a Heat Recovery Steam Generator and Steam Turbine System)

  • 박형준;김동섭;노승탁
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.994-1001
    • /
    • 2000
  • The dynamic behavior of a single-pressure heat recovery steam generator and turbine system for the combined cycle power plant is simulated on the basis of one-dimensional unsteady governing equations. A water level control and a turbine power control are also included in the calculation routine. Transient response of the system to the variation of gas turbine exit condition is simulated and effect of the turbine power control on the system response is examined. In addition, the effect of the treatment of inertia terms(fluid inertia and thermal inertia of heat exchanger metal) on the simulated transient response is investigated.

HRSG 소음예측 프로그램 개발 (Development of Noise Prediction Program for HRSG)

  • 정철웅;류제욱;남경훈;이병은;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.389-395
    • /
    • 2000
  • It is usually the contractual responsibility of HRSG(Heat Recovery Steam Generator) supplier to limit combustion turbine exhaust noise at cogeneration sites. Thus, it is necessary to predict the noise level from HRSG at the stage of preliminary design. HRSG is usually composed of inlet duct, main casing, outlet duct, stack. To satisfy the noise limit level, additional equipments are sometimes required - duct shroud, silencer. We develop algorithms for predicting the noise emission from all these equipments of HRSG units. For the convenience of user, we develop the GUI window version program, named NP-HRSG program. To evaluate the accuracy of this program, predicted noise levels from a real HRSG model are compared with measured data. Through this comparison, we observe that the maximum error is just about 3dB.

  • PDF

배열회수 보일러 구조물의 피로수명 평가를 위한 유동해석 (The CFD Analysis for the Fatigue Life Evaluation of HRSG Structure)

  • 김진범;김철호
    • 에너지공학
    • /
    • 제29권3호
    • /
    • pp.7-17
    • /
    • 2020
  • 배열회수보일러는 가스터빈의 고온의 배기가스 에너지를 이용하여 증기를 발생시키는데 고속의 배기 가스에 의해 유체유발진동이 발생하여 다수의 구조물 파손이 발생한다. 구조물의 파손을 예측하기 위한 피로수명 평가는 유체유발 진동으로 발생하는 진동분석을 통해 PSD(Power Spectral Density)을 도출해야 하지만, 가스터빈의 배기가스 유동 형태가 매우 빠르고 복잡하여 발생되는 진동을 이론, 실험적으로 도출되는 것은 매우 어렵다. 하지만 LES(Large Eddy Simulation) 적용을 통해 구조물의 위치에 따라 진동 특성을 파악할 수 있는 방법을 정립하였고, 이러한 진동 특성을 구조 해석에 적용하면 구조물 피로수명 평가에 활용할 수 있다.

복합발전용 배열회수보일러의 소음예측 (Noise Prediction of HRSG for Gas Turbine)

  • 남경훈;박석호;김백영;김원일
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1116-1122
    • /
    • 1999
  • HRSG, which is one of main components of the combined cycle power plant,is composed of an inlet duct, a main body and casing, an outlet duct and a stack. It is important to design HRSG wihtin the allowable noise limit. For this purpose, it is necessary to analyze and predict the noise reduction and radiation at HRSG. In this paper, the technology for the noise prediction at each part of HRSG has been based on the empirical and field data, and also the HRSG noise prediction program has been developed. In order to verify the developed technology and program a field test is conducted. The results of noise prediction show good agreement with the measured.

  • PDF

열병합발전소 배기 덕트 시스템의 소음 진동 저감 (Noise and vibration reductions in exhaust duct system of cogeneration power plants)

  • 김원현;주원호;배종국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.641-646
    • /
    • 2004
  • Noise and vibration was encountered in exhaust duct system which is connected with a gas turbine and a heat recovery steam generator(HRSG) of a cogeneration power plants. Especially, these problems occurred when water was added to the fuel injection to reduce NOx contents of the exhaust gas. Through the cavity mode analysis and measurements, It was concluded that these problems occurred due to the acoustic resonance between the duct cavity mode and the excitation force induced by turbulent gas flow during water injection. To reduce the noise and vibration, optimal baffle plate to change the cavity mode was installed inside of duct and noise levels of about 8 dB(A) are reduced in duct system. The effects of baffle plate and guide vane to the HRSG or inlet duct vibration were also evaluated and it was verified that there is no relation to the resonance phenomena. So, vibration of inlet duct was easily reduced by the reinforcement of structures.

  • PDF

전치 가이드 베인 배치 및 형상에 따른 보일러 입구 온도분포의 수치해석 연구 (Numerical Simulation of Duct Flow about Shape and Arrangement of Inlet Guide Vane to Increase the Temperature Uniformity)

  • 이수윤;신승원
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1172-1177
    • /
    • 2008
  • Diverging channel from gas burner exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW steam supply and power generation system. Three different test geometries have been chosen for the numerical simulation. The existing design for 300 kW HRSG system (CASE B) has been improved by geometry and position changes of inlet guide vanes along with gas velocity entrance angle at the diverging channel inlet (CASE C). Both cases has been compared with the case where hot combustion gas is directly injected without any guide vanes (CASE A). Improved design shows overall uniform velocity and temperature distribution compared to existing design.

  • PDF