• 제목/요약/키워드: Heat Pipe Heat Exchanger

검색결과 235건 처리시간 0.023초

폐 바이오매스를 이용한 폐열 회수 열교환기에 관한 연구 (Study on Heat Recovery System using Waste Biomass)

  • 이충구;이세균;이계복;이석호;김정현
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.514-521
    • /
    • 2004
  • Waste heat recovery system was studied numerically and experimentally. Heat exchanger system was designed specially to obtain the optimum heat exchanging performance. Brushwood biomass was used for the present experimental study. Two biomass heat recovery systems were designed and developed. Polyethylene helical pipe line of 0.03 m (inner diameter) was installed to recover the heat of biomass dump. The fermentation process of biomass dump was maintained for 12 weeks. The inner average temperature of biomass was about 51$^{\circ}C$ for both hot exchanger systems. The current heat recovery system could recover up to 6 ㎉/kg of energy.

수직밀폐형 지중열교환기의 온도분포 특성 (The Characteristics of Thermal Diffusion With the Vertical-Closed Loop Type Geothermal Heat Exchanger)

  • 선종철;김병철;고영하
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.57-65
    • /
    • 2013
  • The temperatures with the ground depth, the positions of circulation water in ground heat exchanger were measured and thermal diffusion characteristics with the distances of the direction normal to the borehole was analysed. The deeper the depth of ground, the less the influences of outdoor temperature, but below 10m of ground, there was no influences of ground temperature. When the depth of trench pipe was below the depth of 2m, there was no influence. In the ground of 10m when the distances between the pipe and the other places were above 0.5m, the variations of temperature were less than $1.6^{\circ}C$ and above 2.5m they were less than $0.1^{\circ}C$. When the distances of bore hole were above 5m, there were no. influences of the nearest ground heat exchanger.

Preliminary design and assessment of a heat pipe residual heat removal system for the reactor driven subcritical facility

  • Zhang, Wenwen;Sun, Kaichao;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3879-3891
    • /
    • 2021
  • A heat pipe residual heat removal system is proposed to be incorporated into the reactor driven subcritical (RDS) facility, which has been proposed by MIT Nuclear Reactor Laboratory for testing and demonstrating the Fluoride-salt-cooled High-temperature Reactor (FHR). It aims to reduce the risk of the system operation after the shutdown of the facility. One of the main components of the system is an air-cooled heat pipe heat exchanger. The alkali-metal high-temperature heat pipe was designed to meet the operation temperature and residual heat removal requirement of the facility. The heat pipe model developed in the previous work was adopted to simulate the designed heat pipe and assess the heat transport capability. 3D numerical simulation of the subcritical facility active zone was performed by the commercial CFD software STAR CCM + to investigate the operation characteristics of this proposed system. The thermal resistance network of the heat pipe was built and incorporated into the CFD model. The nominal condition, partial loss of air flow accident and partial heat pipe failure accident were simulated and analyzed. The results show that the residual heat removal system can provide sufficient cooling of the subcritical facility with a remarkable safety margin. The heat pipe can work under the recommended operation temperature range and the heat flux is below all thermal limits. The facility peak temperature is also lower than the safety limits.

정밀 파이프 성형을 위한 벤딩 공정 개발에 관한 연구 (A Study on the Bending Process for Precision Pipe Forming)

  • 김현진;이춘만
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.58-65
    • /
    • 2007
  • The arbitrarily-bended pipe is widely used in a heat exchanger system. Thus, the pipe bending process has important role in performance and productivity of heat exchanger system. The purpose of this study is to investigate the bending process for manufacturing of sound pipe. And, the spring-back effect and the variation of pipe thickness should be controlled effectively. The change of spring-back ratio and the thickness variation of pipe according to the change of bending radius, bending angle and pipe thickness are analyzed by FEM analysis. The analytic results are compared with the experimental data, accordingly the results show good agreement. The method of the analysis can be applied for manufacturing of precision bended pipe.

수치해석을 통한 수직 밀폐형 지중열 교환기의 열전달 거동 연구 (Thermal Behavior of Vertical Ground Heat Exchanger by Numerical Simulation)

  • 길후정;이철호;김주영;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1638-1646
    • /
    • 2008
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 2-D finite element analysis, ANSYS, was employed to evaluate the temperature distribution on the borehole cross section involving HDPE pipe/grout/soil formation to compare the sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system which is equipped with a thermally insulating latice in order to reduce thermal interference between the inflow and outflow pipes. In addition, a 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of grout's thermal properties, rate of circulation pump, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF

공기조화, 냉동 분야의 최근 연구 동향 - 1998년 1999년 학회지 논문에 대한 종합적 고찰 - (Recent Progress in Air Conditioning and Refrigeration Research - A Review of papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 1998 and 1999 -)

  • 이재헌;김광우;김병주;이재효;김우승;조형희;김민수
    • 설비공학논문집
    • /
    • 제12권12호
    • /
    • pp.1098-1125
    • /
    • 2000
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 1998 and 1999 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. 1) A review of the recent studies on fluid flow, turbomachinery and pipe-network shows that many experimental investigations are conducted in applications of impingement jets. Researches on turbulent flows, pipe flows, pipe-networks are focused on analyses of practical systems and prediction of system performance. The results of noise reduction in the turbomachinery are also reported. 2) A review of the recent studies on heat transfer analysis and heat exchanger shows that there were many papers on the channel flow with the application to the design of heat exchanger in the heat transfer analysis. Various experimental and numerical papers on heat exchanger were also published, however, there were few papers available for the analysis of whole system including heat exchanger. 3) A review of the recent studies on heat pump system have focused on the multi-type system and the heat pump cycle to utilize treated sewage as the heat source. The defrosting and the frosting behaviors in the fin-tube heat exchanger is experimentally examined by several authors. Several papers on the ice storage cooling system are presented to show the dynamic simulation program and optimal operation conditions. The study on the micro heat pipes for the cooling of high power electronic components is carried out to examine the characteristics of heat and mass transfer processed. In addition to these, new type of separate thermosyphon is studied experimentally. 4) The recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. New systems operating with natural refrigerants are drawing lots of attention. In addition to these, evaporation and condensation heat transfer characteristics of traditional and new refrigerants are investigated for plain tubes and also for microfin tubes. Capillary tubes and orifice are main topics of research as expansion devices and studies on thermophysical properties of new refrigerants and refrigerant/oil mixtures are widely carried out. 5) A review of the recent studies on absorption cooling system shows that numerous experimental and analytical studies on the improvement of absorber performance have been presented. Dynamic analysis of compressor have been performed to understand its vibration characteristics. However research works on tow-phase flow and heat transfer, which could be encountered in the refrigeration system and various phase-change heat exchanger, were seemed to be insufficient. 6) A review of recent studies on duct system shows that the methods for circuit analysis, and flow balancing have been presented. Researches on ventilation are focused on the measurement of ventilation efficiency, and variation of ventilation efficiency with ventilation methods by numerous experimental and numerical studies. Furthermore, many studies have been conducted in real building in order to estimate indoor thermal environments. Many research works to get some information for cooling tower design have been performed but are insufficient. 7) A review on the recent studies on architectural thermal environment and building mechanical systems design shows that thermal comfort analysis is sitting environment, thermal performance analysis of Korean traditional building structures., and evaluation of building environmental load have been performed. However research works to improve the performance of mechanical system design and construction technology were seemed to be insufficient.

  • PDF

액압 성형을 이용한 내부복합파형 고효율 이중관 제조 기술 (Manufacturing of High-Performance Double Layered Tube with Corrugated Internal Pattern via the Hydroforming Process)

  • 한상욱;김대용;문영훈
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.143-150
    • /
    • 2022
  • The purpose of this study was to investigate an innovative hydroforming process for the cost-effective manufacturing of double layered tube with circumferentially corrugated patterns. Conventional double pipe heat exchanger has relatively poor heat transfer efficiency because of the limited contact area resulting from the concentrically arranged simple cylindrical structure. As a promising alternative to enhance heat transfer efficiency, double layered tube with corrugated internal pattern was considered in this study. To fabricate corrugated inner tube, innovative tube hydroforming system was developed. The customized loading paths were established using the simulated forming pressure and contracting stroke at various bar diameters. Experimentally obtained cross-sectional profiles were analyzed to evaluate the reliability and applicability of the hydroformed tube with various patterns. The results demonstrate that the proposed hydroforming process can be a feasible alternative for manufacturing high-performance double-tube heat exchangers.

초소형 열교환기 기술

  • 이기우
    • ESCO지
    • /
    • 통권13호
    • /
    • pp.50-55
    • /
    • 2001
  • 최근의 계속된 칩(Chip)기술의 발전으로 전자부품의 고성능화가 가능해 졌지만, 그에 따라서 부수적으로 전자제품으로부터 발생되는 열로 인한 많은 열적인 문제도 야기되었다. 칩자체의 초소형화와 고성능화는 전자, 통신, 항공 우주, 각종 에너지 시스템들의 소형화가 더욱 가능해졌고, 또한 이러한 시스템들의 열적인 문제를 해결할 장치들도 초소형화하는 제품들이 필요하게 되었다. 따라서 본 기술에서는 초소형 전자기기시스템(Micro-Electro Mechanical System) 기술의 발전에 따라 가공이 가능하게 된 초소형 열교환기(Micro Heat Exhanger)에 관한 기술을 초소형 채널 열교환기(Micro Channel Heat Exchanger), 그리고 초소형 히트파이프 열교환기(Micro Heat Pipe Heat Exchanger)와 같이 세 가지로 분류하여 그 기술의 현재와 앞으로의 전망을 소개하고자 한다.

  • PDF

공기열원 히트펌프를 위한 공기식 지중 열교환기(GAHX) 설계 및 분석 연구 (Ground Air Heat Exchanger Design and Analysis for Air Source Heat Pump)

  • 이광섭;류남진;강은철;이의준
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권2호
    • /
    • pp.1-6
    • /
    • 2016
  • A ground air heat exchanger (GAHX), also called earth air heat exchanger is a useful technology to be integrated with other renewable energy technologies. In this study, ground-air heat exchanger system for the air source heat pump is introduced. The purpose of this study is to design the volumetric flow rate and the length of GAHX system. A GAHX length model equation has been developed and used for calculation. GAHX thermal efficiency are recommended as 75% and 85% in order to optimize pipe length. $2,750m^3/h$, $2,420m^3/h$ of volumetric flow rate on 88.3m, 111.7m length are suggested for providing 7.5kW thermal capacity. And the number of path is recommended more than two to minimize pressure drop. For future study, advanced model equation study with ground thermal behavior and a more efficient GAHX design will be considered.

자동차 냉각수 폐열회수 열전발전 시스템의 성능에 관한 연구 (An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권7호
    • /
    • pp.329-334
    • /
    • 2014
  • This study indicated the possibility of energy regeneration from waste coolant heat, by using thermoelectric generation integrated with heat pipe. The internal combustion engine rejects more than 60% wasteful energy to the atmosphere by heat. The thermoelectric generator has recently been studied, to convert the energy from engine waste heat into electricity. For coolant waste heat recovery, a thermoelectric generator was investigated, to find out the possibility of vehicular application. Performance characteristics were conducted with various test conditions of coolant temperature, coolant mass flow rate, air temperature, and air velocity, with the thermoelectric generator installed either horizontally or vertically. Experimental results show that the electric power and conversion efficiency increases according to the temperature difference between the hot and cold side of the thermoelectric generator, and the coolant flow rate of the hot side heat exchanger. Performance improvement can be expected by optimizing the heat pipe design.