• 제목/요약/키워드: Heat Pipe Heat Exchanger

검색결과 238건 처리시간 0.023초

플라스틱 판형 열교환기의 성능에 영향을 미치는 인자에 관한 연구 (A Study on the Factors Affecting the Performance of Plastic Plate Heat Exchanger)

  • 유성연;정민호;이용문
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.839-848
    • /
    • 2005
  • Plastic plate heat exchangers have many advantages over the conventional heat exchangers such as aluminum plate heat exchangers, rotary wheel heat exchangers and heat pipe heat exchangers which have been used for ventilation heat recovery in the air-conditioning systems. In the present study, pressure drop and heat transfer characteristics of plastic plate heat exchangers are investigated for various design parameters and operating conditions which affect the performance of the plastic plate heat exchangers. In flat plate type heat exchanger, material thickness and channel height of heat exchanger are considered, and corrugate size and heat transfer area are considered in case of corrugate type heat exchanger. Pressure drop and effectiveness of the corrugate type heat exchanger increase as the corrugate size decreases.

연도가스 열회수용 다관형 순환유동층 열교환기 성능실험 (Performance Test of a Multi-riser Fluidized Bed Heat Exchanger for Flue Gas Heat Recovery)

  • 전용두;이금배
    • 설비공학논문집
    • /
    • 제16권3호
    • /
    • pp.273-279
    • /
    • 2004
  • A lab-scale fluidized bed heat exchanger for waste gas heat recovery is devised and tested. Compared to our previous works on fluidized bed type system with a single riser, the present heat exchanger system is featured by its multiple (four) risers to handle increased amount of exhaust gas. Particles are introduced to the main hot gas stream alongside the pipe circumference near riser inlets. The heat exchanger performance and pressure drop are evaluated through experiments for the present gas-to-water heat exchanger system.

지중열교환기의 지중열전도도 성능 분석 (Performance Analysis of Ground Thermal Conductivity by Ground Heat Exchanger)

  • 김영준;최재상;강용태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.161-166
    • /
    • 2005
  • The objectives of this paper are to estimate the ground thermal conductivity by ground heat exchangers in two different places - Chooncheon and Wonjoo, and to analyze the effect of ground thermal conductivity on the ground thermal diffusivity and the size of the ground heat exchanger. In Chooncheon area, a single-U type HDPE pipe (25mm diameter) with borehole diameter of 150mm, length of 150m is installed. In Wonjoo area, a single-U type HDPE pipe (40mm diameter) with borehole diameter 150mm, length of 200m is installed. It is found that the ground thermal conductivities are estimated as 2.69 $W/m^{\circ}C$ and 2.99 $W/m^{\circ}C$ in Chooncheon and Wonjoo, respectively. It is also found that the ground heat exchanger size is reduced by 8.6% with 25% increase of ground thermal conductivity, and increase by 11.8% with 25% decrease of ground thermal conductivity.

  • PDF

지표수 열교환기 설계 변수와 적용 효과에 대한 선행 분석 (Preliminary Analysis on Design Parameters and Application Effects of Surface Water Heat Exchanger (SWHE))

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제12권3호
    • /
    • pp.24-32
    • /
    • 2016
  • Commercial buildings and institutions are generally cooling-dominated and therefore reject more heat to a borehole ground heat exchanger (BHE) than they extract over the annual cycle. Shallow ponds can provide a cost-effective means to balance the thermal loads to the ground and to reduce the length of BHE. This paper presents the analysis results of the impact of design parameters on the length of SWHE pipe and its application effect on geothermal heat pump (GHP) system using BHE. In order to analysis, we applied ${\varepsilon}-NTU$ method on designing the length of SWHE pipe. Analysis results show that the required pipe length of SWHE was decreased with the increase of approach temperature difference and with the decrease of pipe wall thickness. In addition, when the SWHE was applied to the GHP system, the temperature of BHE was more stable than that of standalone BHE system.

HEAT PIPE TYPE EXHAUST HEAT RECOVERY SYSTEM FOR HOT AIR HEATER

  • Kang, G.C.;Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.654-661
    • /
    • 2000
  • Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes, ${\emptyset}15.88{\times}600mm$ located in the rectangular box of $600{\times}550{\times}330mm$, a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to $-12^{circ}C$ respectively when air flow rate $1,100\textrm{m}^3/hr$. The exhaust gas temperature left the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about $60^{circ}C$ at the air flow rate of $1,100\textrm{m}^3/hr$. This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis.

  • PDF

Concentric Double Pipe 열교환기에서 냉각수 급랭 현상의 모사에 대한 연구 (Study on Simulation of Cooling Water through Concentric Double Pipe Heat Exchanger )

  • 최안철;이성우;신익호;최성웅
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.741-747
    • /
    • 2023
  • In this study, the heat transfer characteristics were numerically analyzed to investigate the possibility of utilizing cooling water using liquid nitrogen. From the study, as the mass flow rate of the hot fluid increased, the heat transfer rate increased by 8.9-81.7%. And lowering the inlet temperature of the hot fluid resulted in increase in the heat transfer rate by 33.8-71.5%. As for the filling level of liquid nitrogen, as higher filling level led to a decrease in the outlet temperature and an increase in the overall heat transfer coefficient.

히트파이프를 이용한 온풍난방기 배기열회수 시스템의 열회수 특성 (Heat Recovery Characteristics of the Exhaust Heat Recovery System with Heat Pipe Unit Attached to the Hot Air Heater in the Greenhouse)

  • 강금춘;김영중;유영선;백이;이건중
    • Journal of Biosystems Engineering
    • /
    • 제26권5호
    • /
    • pp.441-448
    • /
    • 2001
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat capacity of the oil burred. In order to recover the heat of this exhaust gas and to use for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The system consisted of a heat exchanger made of heat pipes, ø15.88${\times}$600mm located in the rectangular box of 675(L)${\times}$425(W)${\times}$370(H)mm, an air suction fan and air ducts. The number of heat pipe was 60, calculated considering the heat exchange amount between exhaust gas and air and heat transfer capacity of a heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/h depending on the inlet air temperature of 12 to -12˚at air flow rate of 1.100㎥/h. The temperature of the exhaust gas left the heat exchanger dropped to 100$^{\circ}C$ from 270$^{\circ}C$ after the heat exchange between the suction air and the exhaust gas.

  • PDF

휜 타입 내부열교환기 적용에 따른 차량용 냉방시스템 성능 특성 (Performance Characteristics of Vehicle Air Conditioning System Using Internal Heat Exchanger with Inner Fin)

  • 김성철
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.69-73
    • /
    • 2013
  • 내부열교환기를 이용한 에어컨 시스템은 작동유체인 R134a의 고압측 액상냉매와 저압측 기상냉매의 상호 열교환을 통해 시스템의 응축 효율을 증가시켜 에너지 효율을 개선시킨다. 이는 에어컨 시스템의 성능 향상 및 경량화를 가능하게 하여 차량 연비 향상과 냉매 누출을 최소화할 수 있으며, 또한 현 R134a 대비 대체냉매 (R1234yf 등)의 동등 냉방성능 확보를 가능하게 하는 기술이다. 본 연구에서는 내측 압출 파이프 및 외측 사이 고효율 냉각 휜 (fin)이 삽입된 이중관 형태의 내부열교환기 상세 설계를 위해, 냉각 휜의 높이 및 내측 압출 파이프 내부형상 등의 다양한 형상 설계인자 변경에 따른 열전달 성능 및 압력강하 특성을 살펴보았다. 가장 우수한 내부열교환기 성능은 난류형성을 위한 내측관 형상이 라이너 및 세레이션 겸용 타입이었으며, 이는 내부열교환기가 장착되지 않은 경우보다 냉방시스템 성능이 약 6.4%, 시스템 COP는 약 9.2% 향상된 결과를 나타내었다.

축방향 사다리꼴 그루브 히트파이프의 열성능에 대한 실험적 연구 (Experimental Study of Thermal Performance of Heat Pipe with Axial Trapezoidal Grooves)

  • 서정세;이운
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.407-414
    • /
    • 2003
  • Analysis and experiment are performed to investigate the thermal performance of a heat pipe with axial grooves. The heat pipe was designed in a 6.5 mm I.D., 17 axial trapezoidal grooves. 1000 mm long tube of aluminium, and ammonia as working fluid. A mathematical equations fur heat pipe with axial grooves is formulated to obtain the capillary limitation on heat transport rate in a steady state. As a result, heat transport factor of heat pipe has the maximum at the operating temperature of 293K in 0m elevation. As the elevation of heat pipe increases. the heat transport factor of the heat pipe is reduced markedly, comparing with that of horizontal elevation of the heat pipe. It may be considered that such behavior of heat pipe is caused by the working fluid swarmed back to the condenser port due to gravity force and supercooled by a coolant of heat exchanger. Analytical results of heat transport factor are in a good agreement with those of experiment.