• Title/Summary/Keyword: Heat Load Simulation

Search Result 250, Processing Time 0.031 seconds

Recent Progress in Air Conditioning and Refrigeration Research - A Review of papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 1998 and 1999 - (공기조화, 냉동 분야의 최근 연구 동향 - 1998년 1999년 학회지 논문에 대한 종합적 고찰 -)

  • 이재헌;김광우;김병주;이재효;김우승;조형희;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1098-1125
    • /
    • 2000
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 1998 and 1999 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. 1) A review of the recent studies on fluid flow, turbomachinery and pipe-network shows that many experimental investigations are conducted in applications of impingement jets. Researches on turbulent flows, pipe flows, pipe-networks are focused on analyses of practical systems and prediction of system performance. The results of noise reduction in the turbomachinery are also reported. 2) A review of the recent studies on heat transfer analysis and heat exchanger shows that there were many papers on the channel flow with the application to the design of heat exchanger in the heat transfer analysis. Various experimental and numerical papers on heat exchanger were also published, however, there were few papers available for the analysis of whole system including heat exchanger. 3) A review of the recent studies on heat pump system have focused on the multi-type system and the heat pump cycle to utilize treated sewage as the heat source. The defrosting and the frosting behaviors in the fin-tube heat exchanger is experimentally examined by several authors. Several papers on the ice storage cooling system are presented to show the dynamic simulation program and optimal operation conditions. The study on the micro heat pipes for the cooling of high power electronic components is carried out to examine the characteristics of heat and mass transfer processed. In addition to these, new type of separate thermosyphon is studied experimentally. 4) The recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. New systems operating with natural refrigerants are drawing lots of attention. In addition to these, evaporation and condensation heat transfer characteristics of traditional and new refrigerants are investigated for plain tubes and also for microfin tubes. Capillary tubes and orifice are main topics of research as expansion devices and studies on thermophysical properties of new refrigerants and refrigerant/oil mixtures are widely carried out. 5) A review of the recent studies on absorption cooling system shows that numerous experimental and analytical studies on the improvement of absorber performance have been presented. Dynamic analysis of compressor have been performed to understand its vibration characteristics. However research works on tow-phase flow and heat transfer, which could be encountered in the refrigeration system and various phase-change heat exchanger, were seemed to be insufficient. 6) A review of recent studies on duct system shows that the methods for circuit analysis, and flow balancing have been presented. Researches on ventilation are focused on the measurement of ventilation efficiency, and variation of ventilation efficiency with ventilation methods by numerous experimental and numerical studies. Furthermore, many studies have been conducted in real building in order to estimate indoor thermal environments. Many research works to get some information for cooling tower design have been performed but are insufficient. 7) A review on the recent studies on architectural thermal environment and building mechanical systems design shows that thermal comfort analysis is sitting environment, thermal performance analysis of Korean traditional building structures., and evaluation of building environmental load have been performed. However research works to improve the performance of mechanical system design and construction technology were seemed to be insufficient.

  • PDF

The Development of the Simple SHGC Calculation Method in Case of a Exterior Venetian Blind Using the Simulation (시뮬레이션을 이용한 외부 베네시안 블라인드의 약식 SHGC 계산법 개발)

  • Eom, Jae-Yong;Lee, Chung-Kook;Jang, Weol-Sang;Choi, Won-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.73-83
    • /
    • 2015
  • When it comes to these buildings for business use, cooling load during summertime was reported to have great importance which, as a result, impressively increased interest in Solar Heat Gain Coefficient (SHGC). Such SHGC is considered to be lowered with the help of colors and functions of glass itself, internal shading devices, insulation films and others but basically, these external shading devices for initial blocking that would not allow solar heat to come in from outside the buildings are determined to be most effective. Of many different external shading devices, this thesis conducted an analysis on Exterior Venetian Blind. As for vertical shading devices, previous researches already calculated SHGC conveniently using concepts of sky-opening ratios. However in terms of the Venetian Blind, such correlation is not possibly applied. In light of that, in order to extract a valid correlation, this study first introduced a concept called shape factor, which would use the breadth and a space of a shade, before carrying out the analysis. As a consequence, the concept helped this study to find a very similar correlation. Results of the analysis are summarized as follows. (1) Regarding SHGC depending on the surface reflectance of a shade, an average of 2% error is observed and yet, the figure can always be ignored when it comes to a simple calculation. (2) As for SHGC of each bearing, this study noticed deviations of 4% or less and in the end, it is confirmed that extraction can be achieved with no more than one correlation formula. (3) When only the shape factor and nothing else is used for finding a correlation formula, the formula with a deviation of approximately 5% or less is what one would expect. (4) Since the study observed slight differences in bearings depending on ranges of the shape factors, it needed to extract a weighted value of each bearing, and learned that the smaller the shape factor, the wider the range of a weighted value. The study now suggests that a follow-up research to extract a simple calculation formula by dealing with all these various inclined angles of shade, solar radiation conditions of each region (the ratio of diffuse radiation to direct radiation and others) as well as seasonal features should be carried out.

On the Derivation of Material Constants Associated with Dynamic Behavior of Heat Formed Plates (열성형 판 부재의 동적거동에 관련된 재료상수 산출에 관한 연구)

  • Lee, Joo-Sung;Lim, Hyung-Kyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.105-114
    • /
    • 2016
  • When impact load is applied to a plate structure, a common phenomenon that occurs in structures is plastic deformation accompanied by a large strain and eventually it will experience a fracture accordingly. In this study, for the rational design against accidental limit state, the plastic material constants of steel plate which is formed by line heating and by cold bending procedure have been defined through the numerical simulation for the high speed tension test. The usefulness of the material constants included in Cowper-Symonds model and Johnson-Cook model with the assumption that strain rate can be neglected when strain rate is less than the intermediate speed is verified through comparing the present numerical results with those in references. This paper ends with describing the future study.

Analytical Study on the Fire Resistance of iTECH Composite Beam (iTECH 합성보의 내화성능에 대한 해석연구)

  • Lim, Yoon Hee;Kang, Seong Deok;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.655-664
    • /
    • 2006
  • The purpose of thisanalytical study of an iTECH composite beam subjected to fire conditions is to determine the beam's fire resistance performance using its load ratio and fire protection as parameters. A composite structural system is expected to have a safer and more economical fire safety design than a mere collection of isolated members.heat transfer analysis was performed on the basis of the finite element program ANSYS 10.0 using an ISO834 standard fire, following the main guidelines proposed by EC1 Part 2.2 and EC4 Part 1.2. To validate the analytical simulation of the iTECH composite beam, comparison of the experimental tests was proposed.

A quantitative modeling approach to estimate the risks posed by the smuggled animal products contaminated with Foot-and-Mouth Disease (FMD) virus

  • Hong, Ki-Ok;Lee, Gil-Hong;Pak, Son-Il
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.2
    • /
    • pp.223-231
    • /
    • 2005
  • A quantitative risk assessment tool was used to provide estimates of the probability that foot-and-mouth (FMD) virus-contaminated, smuggled animal products are fed to susceptible swine in Korea. Sensitivity analyses were conducted to attempt to distinguish between parameter uncertainty and variability, using different assumptions on the effect of cooking at home, the effect of the fresh meat, and the effect of heat treatment at garbage processing facility. The median risk estimate was about 20.1% with a mean value of 27.4%. In a scenario regarding all beef and pork were considered as fresh meat the estimated median risk was 3.4%. The risk was greatly dependent on the survival parameters of the FMD virus during the cooking or heat treatment at garbage processing facility. Uncertainty about the proportion of garbage that is likely contaminated with FMD had a major positive influence on the risk, whereas conversion rate representing the size of a load had a major negative effect. This model was very useful in assessing the risk explored. However, the model also requires enhancements, such as the availability of more accurate data to verify the various assumptions considered such as FMD prevalence in a specific country, proportion of garbage which is recycled as feed, proportion of food discarded as garbage. Other factors including the effect of selection of animals for slaughter, ante- and post-mortem inspection, the domestic distribution of the smuggled products, and susceptible animals other than pigs, are need to be taken into account in the future model development.

Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007 (설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.

Process Development of Rotor Shaft using a Large Friction Welding (대형마찰용접을 이용한 로타샤프트 제조공정개발)

  • Jeong, H.S.;Cho, J.R.;Lee, N.K.;Park, H.C.;Choi, S.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.401-404
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to different material characteristics, such as, thermal conductivity and flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.

  • PDF

Optimal Control for Central Cooling Systems (중앙냉방시스템의 최적제어에 관한 연구)

  • 안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.354-362
    • /
    • 2000
  • Optimal supervisory control strategy for the set points of controlled variables in the central cooling system has been studied by computer simulation. A quadratic linear regression equation for predicting the total cooling system power in terms of the controlled and uncontrolled variables was developed using simulated data collected under different values of controlled and uncontrolled variables. The optimal set temperatures such as supply air temperature, chilled water temperature, and condenser water temperature, are determined such that energy consumption is minimized as uncontrolled variables, load, ambient wet bulb temperature, and sensible heat ratio, are changed. The chilled water loop pump and cooling tower fan speeds are controlled by the PID controller such that the supply air and condenser water set temperatures reach the set points designated by the optimal supervisory controller. The influences of the controlled variables on the total system and component power consumption was determined. It is possible to minimize total energy consumption by selecting the optimal set temperatures through the trade-off among the component powers. The total system power is minimized at lower supply, higher chilled water, and lower condenser water set temperature conditions.

  • PDF

Application of Passive Solar Systems for Office Buildings (사무소 건물을 위한 자연형 태양열 시스템의 응용)

  • Park, Jin-Seo;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.22-28
    • /
    • 2010
  • This study analyzed the performance of passive solar system for office building. A unit model of the passive solar system was proposed in order to predict its performance under varying parameters and Seoul weather date. Steady state heat transfer equations were set up using a energy balanced equations and solved using a inverse matrix method. Numerical simulation program to analyze system was developed by using MATLAB. As the results, the passive solar system performance of office building was determined by the insolation and the outdoor air temperature. Also the passive solar system indicate 6.7~16.2% of annual average efficiency. In the comparison with other systems of the conventional wall, mass wall could reduce the heating loads of 7.1% and trombe wall could reduce heating loads of 11.5%. Through this study, performance of passive solar system for office building was verified by numerical method. Consequently, the passive solar system could operate an important role as the alternative for saving energy consumption of office building, and the additional studies should be made through the experimental method for the commercialization.

The Voltage-fed High Frequency Resonant Inverter Using Induction Heated Dry Steam Generator

  • Kim, Chil-Ryong;Lee, Jong-Kurl;Jung, Sang-Hwa;Mun, Sang-Pil;Kim, Sang-Don;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.415-418
    • /
    • 2008
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction-based fluid beating appliance using voltage-fed type scries capacitor-compensated load resonant high-frequency IGBT inverter with a phase-shifted PWM and a power factor correction schemes. Its operating characteristics in steady-state are illustrated including unique features and evaluated on the basis of its computer simulation and experimental results of 10kw breadboard appliance for hot water producer and superheated steamer. The promising cost effective inverter-fed boiler appliances for electromagnetic induction-heated type fluid-heating in the pipeline systems are proposed for induction-heated boiler, super heat steamer, high temperature water producer, hot gas producer and metal catalyst heating for exhaust gas cleaning in engine, which are more suitable and acceptable for industrial, chemical, and consumer energy utilization for household and business from a practical point of view.

  • PDF