• Title/Summary/Keyword: Heat Load Analysis

Search Result 627, Processing Time 0.024 seconds

A Study on the Measurement for Table Deflection using Laser Interferometer and Simulation (레이저를 이용한 테이블 처짐 측정과 시뮬레이션에 관한 연구)

  • 김민주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.55-63
    • /
    • 1999
  • The acceleration of the performance of machine tools influences the development of the semi-conductor and optical technology as the development of NC and measurement technology. Because the measurement has been done to unload condition without considering of mechanical stiffness in the case of machining center as we measure the quasi-static error of machine tools on general study people who works on the spot has many problems on the data value. Also there are no satisfiable results until now in spite of many studys about this because the deflections of the table and the shaft supporting a workpiece influence, influence the accuracy of the table and shaft supporting a workpiece influence the accuracy of the workpiece. And there is doubt about the inspection method of measured error. In this paper Therefor we will help working more accurately on the spot by measuring analyzing displaying the defoec-tion of the table and support shaft when we load on the table and the support shaft of machining center using laser interfer-ometer. Also we try to settle new conception of the measurement method and more accurate grasp of the deflection tenden-cy by verifing the tendency of the error measured through the comparison of the simulated error measured through the comparison of the simulated error using ANSYS a common finite element analysis program which is able to measure heat deformation material deformation and error resulted from this study.

  • PDF

Improving the Reliability of a Reciprocating Compressor for Applications in a Refrigerator

  • Woo, Seong-Woo;Chu, Yong-Ho;Ahn, Haeng-Keun
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.580-586
    • /
    • 2007
  • To enhance the reliability of a newly designed reciprocating compressor applied in a domestic compressor, accelerated life tests were developed using new definitions of the sample size and the $B_1$ life index. In $1^{st}$ accelerated life testing, the compressor was locked due to the fracture of the suction reed valve. The failure modes and mechanisms of the suction reed valve in the accelerated tests were found to be similar to that of the failed product in the field. The root cause of the failure was the overlap between the suction reed valve and the valve plate in the suction port. The missing parameters in the design phase were modified by expanding the trespan size, introducing tumbling process, changing the material and thickness for the valve, introducing a ball peening and brushing process for the valve plate. In $2^{nd}$ accelerated life testing, the compressor was locked due to the interference between the crank shaft and thrust washer. The corrective plan was to heat treat the crank shaft. The $B_1$ life of the compressor improved from 1.5 to 12.9 years.

Study of strength Development of Ultra High-Strength Concrete (초고강도 콘크리트의 강도발현에 관한 기초적 연구)

  • Min, Hong-Jun;Gong, Min-Ho;Lim, Nam-Gi;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.75-79
    • /
    • 2006
  • Recently, more highly effective construction materials are needed for the reasonable and economical structure system is required as the construction structures become more multi storied, large-sized and diversified. That is to say, the highly qualified concrete is positively promoted as a part of plan to establish the effective space according to the dead load of structures and diminish of segment profile and to build up the economic structures. However, the high strength concrete has the problems such high brittleness and low ductility. Specially, for the high strength concrete, it has different strength from normal concrete as the internal temperature goes up steadily due to high heat of hydration by the quantities of highly level of cement, so the concrete which is mixed with various miscible materials is used. As the development and study for high strength concrete (more than $100N/mm^2$) is under way actively and the strength of high strength concrete increases, the strength different from the existing high strength concrete of ten than $100N/mm^2$, but the study for this is not adequate and indefinite. In addition, the study and report to apply the strength expression and analysis results of internal structure. Therefore, this study is an experiment about using the miscible materials affects what happens to the longitudinal physical property.

  • PDF

A Study on the Energy Performance Evaluation of Zero Energy House in Zero Energy Town (제로에너지타운 내 주택 에너지 성능 평가에 관한 연구)

  • Lee, Wang-Je;Baek, Nam-Choon;Lee, Kyoung-Ho;Heo, Jae-Hyeok
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • In this study, energy performance analysis of houses in zero energy demonstration town(ZeT) was carried out using the monitoring results. This ZeT was composed 29 zero energy individual houses(ZeH) which were applied passive as well as active technologies. The results are as follows. (1) Residents are generally considered to have been lacking basic mind to save energy, (2) In particular, average yearly total energy consumption per house is 12,834 kWh and specific heating energy is $53.2kWh/m^2{\cdot}yr$ which is higher than that of passive house. This is because of one of the reason just pointed out in subsection (1). (3) Most part of the residual energy load are supplied with only renewable energy, but not operating energy for geothermal heat pump which is use of cheap electricity.

Microgrid energy scheduling with demand response

  • Azimian, Mahdi;Amir, Vahid;Haddadipour, Shapour
    • Advances in Energy Research
    • /
    • v.7 no.2
    • /
    • pp.85-100
    • /
    • 2020
  • Distributed energy resources (DERs) are essential for coping with growing multiple energy demands. A microgrid (MG) is a small-scale version of the power system which makes possible the integration of DERs as well as achieving maximum demand-side management utilization. Hence, this study focuses on the analysis of optimal power dispatch considering economic aspects in a multi-carrier microgrid (MCMG) with price-responsive loads. This paper proposes a novel time-based demand-side management in order to reshape the load curve, as well as preventing the excessive use of energy in peak hours. In conventional studies, energy consumption is optimized from the perspective of each infrastructure user without considering the interactions. Here, the interaction of energy system infrastructures is considered in the presence of energy storage systems (ESSs), small-scale energy resources (SSERs), and responsive loads. Simulations are performed using GAMS (General Algebraic modeling system) to model MCMG, which are connected to the electricity, natural gas, and district heat networks for supplying multiple energy demands. Results show that the simultaneous operation of various energy carriers, as well as utilization of price-responsive loads, lead to better MCMG performance and decrease operating costs for smart distribution grids. This model is examined on a typical MCMG, and the effectiveness of the proposed model is proven.

Design Considerations of Cryogenic Cooling System for High Field Magnets

  • Choi, Yeon-Suk;Kim, Dong-Lak;Lee, Byoung-Seob;Yang, Hyung-Suk;Yoo Jong-Shin;Painter Thomas A.;Miller John R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.30-33
    • /
    • 2006
  • Several crucial issues are discussed in the design of cryogenic cooling system for high field magnets. This study is mainly motivated by our ongoing program to develop a 21 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The magnets of this system will be built horizontally to accomplish the requirement of user friendliness and reliability, and the replenishment of cryogen will not be necessary by a closed-loop cooling concept. The initial cool-down and safety are basically considered in this paper. The effects of the helium II volume and the gap distance of the weight load relief valve (or safety valve) on the cool-down time and temperature rising during an off-normal state are discussed. The total amount of cryogenic cooling loads and the required helium flow rate during cool-down are also estimated by a relevant heat transfer analysis. The temperatures of cryogen-free radiation shield are finally determined from the refrigeration power of a cryocooler and the total cryogenic loads.

MyBed : IoT Based Sleep Helper (MyBed : IoT 기반 수면 도우미)

  • You, Sung-Min;Kim, Tae-jun;Kim, Tae-han;Kim, Sung-il;Heo, Gyeongyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.423-424
    • /
    • 2021
  • In this paper, we propose a system that collects data from sensors that detect the sleeping environment and adjusts the sleeping environment optimally based on the environment to help you get a good night's sleep. The sleep environment analysis is based on the determination of the sleep stage by detection of twisting through the load cell. In addition, based on data such as temperature, humidity, and illuminance, heat devices, humidifiers, blinds, etc. are controlled to create an environment in which to have a good sleep. The sleep environment control according to the sleep state can reduce fatigue when waking up by inducing a sleep state that is easy to wake up.

  • PDF

Analysis of Corrosion Resistance and Dew Point with Exhaust Gas Concentration and Temperature for Air Preheater Materials in Power Plants (발전소 공기예열기 소재의 배기가스 농도 및 온도에 따른 내식성 및 노점 분석)

  • Seung-Jun Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.351-358
    • /
    • 2023
  • Although many thermal power plants use heat recovery systems, high exhaust gas temperatures are maintained due to corrosion at dew points and ash deposits caused by condensate formation. The dew point of exhaust gas is primarily determined by the concentration of SO3 and steam, and various experiments and calculation equations have been employed to estimate it. However, these methods are known to be less suitable for exhaust gases with low SO3 concentrations. Therefore, in this study, since the temperature of the exhaust gas is expected to decrease due to the low-load operation of the coal-fired power plant, sulfuric acid condensation and low-temperature corrosion are anticipated. We aimed to conduct a quantitative evaluation to propose ways to prevent damage by limiting operating conditions and improving facilities. The experimental results showed that the corrosion rate increased linearly with rising temperatures at a certain sulfuric acid concentration. Furthermore, variations in sulfuric acid concentrations generated during the current power plant operation process did not significantly affect the dew point, and the dew point of sulfuric acid under these conditions was observed to be between 120 - 130 ℃.

Analysis of the Risk of Heat Generation due to Bolt Loosening in Terminal Block Connector Parts (볼트풀림에 의한 터미널 블록의 접속부 발열 위험성 분석)

  • Yeon, Yeong-Mo;Kim, Seung-Hee
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.67-75
    • /
    • 2020
  • In this study, the risk of heat generation due to normal and overload currents that vary with the abnormal loosening angle of wire-connecting bolts were identified. The risks were analyzed based on the thermal characteristics to minimize the carbonization accidents of terminal blocks inside distribution panels typically used in industrial sites. We applied a method for measuring the heating temperature and temperature variations in the terminal blocks in real-time by installing a resistance temperature detector sensor board in the terminal block. The experimental results showed that the terminal block model with a low-rated current exhibited a higher heating temperature, thus, confirming the need to select the terminal block capacity based on load currents. Additionally, the higher the rated current of the terminal block with a high-rated current and the higher the degree of loosening, the faster the carbonization point. Such heating temperature monitoring enabled real-time thermal temperature measurement and a step-by-step risk level setting through thermal analysis. The results of the measurement and analysis of carbonization risks can provide a theoretical basis for further research regarding the risk of fire due to carbonization. Furthermore, the deterioration measurement method using the temperature sensor board developed in this study is widely applicable to prevent fires caused by poor electrical contact as well as risk-level management.

Finite Element Analysis for Temperature Distribution Prediction of Steady Rolling Tires with Detailed Tread Pattern (패턴 형상을 고려한 회전하는 타이어의 온도 예측을 위한 유한 요소 해석)

  • Jeong, Kyoung Moon;Kang, Sung Ju;Park, Woo Cheol;Kim, Hyoung Seok;Kim, Kee Woon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.117-125
    • /
    • 2014
  • The temperature distribution of steady state rolling tires with detailed tread blocks is numerically predicted using the three dimensional full patterned tire model. A three dimensional periodic patterned tire model is constructed by copying 1-sector mesh in the circumferential direction. Using the static tire contact analysis, the strain cycles during one revolution are approximated with the strains at Guassian points of the elements which are sector-wise repeated within the same circular ring of elements, by neglecting the tire rolling effect. Based upon the multi-axial fatigue theory, the maximum principal strain is used to represent the combined effect of six strain components on the hysteretic loss. In the following, the deformation due to the inflation and vertical load is calculated using ABAQUS. Then heat generation rate in each element is calculated using an in-house code. Lastly, temperature distribution is calculated using ABAQUS again. Through the numerical experiments, the validity of the proposed prediction method is examined by comparing with the experiment and the temperature distribution of a patterned tire model is compared with those of the main-grooved simple tire model.