• Title/Summary/Keyword: Heat Insulation

Search Result 884, Processing Time 0.027 seconds

Preparation of Silk Nonwoven Fabrics by Needle Punching, Thermal Bonding and its properties. (니들펀칭법, 열융착법에 의한 실크 부직포의 제조 및 특성)

  • 이기훈;강경돈;정병희;주창환;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.3
    • /
    • pp.205-210
    • /
    • 1999
  • Silk nonwoven fabrics are prepared by needle punching and thermal bonding with silk waste. To enhance the carding efficiency, the degumming rate was controlled with sodium hydrogen sulfite solution. The amount of the remained sericin was 3%(S-3), and 6%(S-6). Mixing wool and LMP(Low melting polyester) with the silk, to improve carding efficiency, was also effective. Following items were tested with prepared silk nonwovon fabrics : weight, thickness, compression, tensile strength, heat insulation, water absorption, and deodorization. The results show that the silk nonwoven fabrics could be used for apparels and new biomaterials.

  • PDF

A Thermal Analysis of 1 kW Hydrogen Linear Generator (1kW급 수소리니어 발전기 열해석)

  • Yang, Si-Won;Lee, Jae-Sung;Kweon, Ki-Yeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.29-32
    • /
    • 2006
  • Recently, many researches of the alternative and renewable energy have introduced due to the increasing oil price, the limited natural resources and the environmental pollution. In case of hydrogen energy, it has some merits, which can be substituted the existing the fossil fuel because of no contaminants from the combustion and the chemical reaction. We have been developing 1kW Hydrogen Linear Generator. In this paper, the thermal characteristic of this prototype linear generator has been investigated and obtained reliable analysis results comparing with experimental measurements. Especially, it is predicted that in case of 1kW, 60Hz test sample, the results satisfy with the temperature standards of H type insulation, which is shown average $69.0^{\circ}C$ temperature distribution at the coil.

  • PDF

A study on the PAL according to thermal characteristic of building skin and perimeter zone depth (건물 외피의 열특성과 외주부 깊이에 따른 PAL에 관한 연구)

  • Kim, Ji-Hye;Kim, Hwan-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.33-38
    • /
    • 2010
  • The perimeter zone is space which receives a significant effect of ambient condition, it is necessary to improve the thermal performance in order to building energy saving. For this reason, a lot of study about the active approach is being performed, such as perimeter-less air conditioning system. But the performance of the perimeter zone is necessary to improve, through the passive approach. Therefore, the purpose of this study is to provide basic materials of energy-saving design of perimeter zone, based of the PAL that simulation changing the thickness of insulation and the rate of windows.

Study on the Peltier Module to Insure the Structural Stability (Peltier module의 구조적 안정성 확보에 관한 연구)

  • Jun, Jong-Hoon;Kim, Jae-Jung;Kim, In-Kwan;Kim, Young-Soon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1144-1149
    • /
    • 2006
  • Electric power is generated by Seeback Effect if there is thermal difference in pettier module. Peltier module is composed by alumina, Bi-Te semiconductor and insulation (or air). If load is increased in pettier module, the alumina of module will be destroyed. One of the preventing method of module destruction is using damper between module and heat source. But the electric Power is dropped because of decrease of thermal difference, if thermal conductivity of damper was tourer than other thermoelectric materials. We design, Polymer Pad for enhancing thermoelectric porter. As the result of these experiment, Polymer Pad is more superior than the Rubber in the stability and thermal conduction.

  • PDF

Analysis on Energy Demand Resulting From the Change in Window Area & Installation of Interior Exterior Blinds (기존 노후건축물의 최적 리모델링 개선안 연구)

  • Kim, Dae-Won;Chung, Kwang-Seop;Kim, Young-Il;Nam, Ariasae;Oh, Se Min
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.207-216
    • /
    • 2014
  • The energy loss can be divided into the loss caused by heat transfer and the loss caused by air flow. Heat transfer is the loss resulting from the heat transmittance of external wall, roof, and floor, and represents one of the most vulnerable elements of existing buildings. To prevent such loss, it is necessary to increase the mean heat transmittance of entire external wall, including the window, to a level above the standard regional value and ensure the air-tightness of window. The old buildings have the structure which is prone to the loss of greater air flow due to the air infiltration through the exit/entrance door upward along the stairway by the stack effect and simultaneous suction of air from each floor, and becomes even vulnerable to the loss of heat insulation for each floor, although the external wall and windows are the most vulnerable parts. The improvement plans for each floor need to be submitted in tandem with the diagnosis of whole building, regarding the diagnosis plan and energy improvement measures based on the survey of site, rather than adhering to the misconception that the replacement of window alone will result in energy-savings.

Fabrication and Evaluation of Heat Transfer Property of 50 Watts Rated LED Array Module Using Chip-on-board Type Ceramic-metal Hybrid Substrate (Chip-on-board 형 세라믹-메탈 하이브리드 기판을 적용한 50와트급 LED 어레이 모듈의 제조 및 방열특성 평가)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.149-154
    • /
    • 2018
  • This paper describes the fabrication and heat transfer property of 50 watts rated LED array module where multiple chips are mounted on chip-on-board type ceramic-metal hybrid substrate with high heat dissipation property for high power street and anti-explosive lighting system. The high heat transfer ceramic-metal hybrid substrate was fabricated by conformal coating of thick film glass-ceramic and silver pastes to form insulation and conductor layers, using thick film screen printing method on top of the high thermal conductivity aluminum alloy heat-spreading panel, then co-fired at $515^{\circ}C$. A comparative LED array module with the same configuration using epoxy resin based FR-4 PCB with thermalvia type was also fabricated, then the thermal properties were measured with multichannel temperature sensors and thermal resistance measuring system. As a result, the thermal resistance of the ceramic-metal hybrid substrate in the $4{\times}9$ type LEDs array module exhibited about one third to the value as that of FR-4 substrate, implying that at least triple performance of heat transfer property as that of FR-4 substrate was realized.

Properties of Organic Light Emitting Diode with ITO/MEH-PPV/Al Structure on Heating Temperatures (열처리 온도에 따른 ITO/MEH-PPV/Al 구조의 유기 발광다이오드의 특성연구)

  • 조중연;장호정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.4
    • /
    • pp.35-38
    • /
    • 2003
  • Polymer light emitting diode (PLED) with an ITO/MEH-PPV/Al structure were prepared by spin coating method on the ITO (indium tin oxide)/glass substrates, using poly(2-methoxy-5-(2-ethylhexoxy)-1,4-phenylenevinylene (MEH-PPV) as the light emitting material. The dependence of heat treatment on the electrical and optical properties for the prepared PLED samples were investigated. The luminance decreased greatly from 630 cd/$\m^2$ to 280 cd/$\m^2$ at 10V input voltage as the heating temperature increased from $65^{\circ}C$ to $170^{\circ}C$. In addition, the luminance efficiency was found to be about 2 lm/W for the sample heat treated at $65^{\circ}C$. These results may be related to the interface roughness and/or the formation of an insulation layer, which is caused by the reaction between electrode and MEH-PPV organic luminescent film layer.

  • PDF

A Study on the Heat Transfer Characteristic of Insulated Multi Core Tube (단열 다심관의 열전달 특성에 관한 연구)

  • Park, Sang-Kyun;Lee, Tae-Ho;Kim, Myoung-Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.604-608
    • /
    • 2015
  • In this paper, we study the characteristics of heat transfer for an insulated multi-core tube using glass wool as an insulator for the multi-core tube. By performing experiments and modeling, we examine the variations in the temperature characteristics of hydraulic oil inside the multi-core tube with atmosphere temperature, inlet temperature, and the flow rate of hydraulic oil for the insulated multi-core tube that we developed. When the minimum inlet flow rate of hydraulic oil employed within the scope of the research is 0.29 l/min, the temperature difference obtained in the experiments and numerical analysis was a maximum of $3^{\circ}C$. For a constant atmospheric temperature, as the inlet temperature of the hydraulic oil increases, the outlet temperature of the hydraulic oil will also increase, regardless of its inlet flow rate. Further, when the inlet flow rate of the hydraulic oil is more than 1.01 l/min, the effect of the atmospheric temperature on the temperature drop of the hydraulic oil is low.

Development of Thermal-Conductivity Measurement System Using Cryocooler (극저온 냉동기를 이용한 열전도도 측정 시스템 개발)

  • Shin, Dong-Won;Kim, Dong-Lak;Yang, Hyung-Suk;Choi, Yeon-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.93-100
    • /
    • 2011
  • The thermal property of insulation material is essential in developing a high-temperature superconductor (HTS) power cable to be operated at around liquid-nitrogen temperature. Unlike metallic materials, nonmetallic materials have a high thermal resistance; therefore, accurate estimate of the heat flow is difficult in the case of nonmetallic materials. The aim of this study is to develop an instrument for precisely measuring the thermal conductivity of insulating materials over a temperature range of 30 K to approximately the room temperature by using a cryocooler. The details of the thermal-conductivity measurement system, including the design and fabrication processes, are described in this paper. In addition, the design optimization to minimize unavoidable heat leakage from room temperature is discussed.

Development and Performance Test of SOFC Co-generation System for RPG (SOFC를 이용한 가정용 열병합 발전시스템 개발 및 성능시험)

  • Lee, Tae-hee;Choi, Jin-Hyeok;Park, Tae-Sung;Choi, Ho-Yun;Yoo, Young-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.361-364
    • /
    • 2009
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 cells with $10{\times}10cm^2$ area and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water. Recently KEPRI developed stacks using $15{\times}15cm^2$ cells and tested them. KEPRI will develop a 5 kW class CHP system using $15{\times}15cm^2$ stacks by 2010.

  • PDF