• Title/Summary/Keyword: Heat Exposure

Search Result 545, Processing Time 0.028 seconds

Cold Hardiness Change in Solenopsis japonica (Hymenoptera: Formicidae) by Rapid Cold Hardening (급속내한성 유기에 의한 일본열마디개미(Solenopsis japonica)의 내한성 변화)

  • Park, Youngjin;Vatanparast, Mohammad;Lee, Jieun
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.193-199
    • /
    • 2021
  • Solenopsis japonica, which is belonging to Formicidae in Hymenoptera, is a native ant species in Korea. However, it had not been studied for cold hardiness of S. japonica to understand on its overwintering mechanisms in field so far. Cold tolerance on developmental stages was measured at different cold temperature with various exposure times. Workers showed more survival at 5℃ and 10℃ compared with other stages and elevated cold tolerance when workers were exposed at 15℃ for more than 12h incubation as a rapid cold hardening (RCH) condition. RCH treatment not only increased survival of workers at cold temperatures, but also decreased supercooling point (SCP) and freezing point (FP). RCH group increased the survival rate by 44% at 10℃ compared with Non-RCH group. SCP and FP were depressed from -10.0 to -14.2℃ and from -11.3 to -15.3℃, respectively, after RCH treatment. Cold temperature increased expression level of cold- and stress-related genes such as glycerol kinase and heat shock protein. These results indicate unacclimated cold tolerance of S. japonica and its acclimation to low temperature by RCH.

Environmental Evaluation of Heating Devices Using Low Grade Coal and Waste Cooking Oil - Aspects of Improving Air Quality in Ulaanbaatar, Mongolia - (저급석탄과 폐식용유를 활용한 난방장치의 환경성 평가 - 몽골 울란바타르시 대기질 개선 측면-)

  • Hyung Don Lee;Hyouk Jin Yun;Sung Whan Cho
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • Mongolia is experiencing some of the world's most serious air pollution problems. The air pollution is especially severe during the winter when raw coal and low-grade fuels are used to heat homes in Ger villages. The impact of this pollution has created significant health and socioeconomic challenges for the country. In order to mitigate this air pollution, this study analyzed the fuel quality of the low-grade fuels and Mongolian waste cooking oils used in Ulaanbaatar, Mongolia. Then the environmental characteristics of traditional stove combustion and a prototype combustion heating device were compared and analyzed. In addition, the effect of replacing the heating devices was evaluated by analyzing their risks to humans. Analysis of the fuel characteristics showed that briquettes had relatively low environmental properties as a result of their high ash, N and S content. Also, after analyzing the combustion characteristics, it was found that the air quality improvement effect was higher when waste cooking oil was burned compared to the three types of coal that were analyzed. Finally, this study evaluated the impact of replacing the Mongolia traditional stove with a prototype stove that uses waste cooking oil. The results of this study are expected to help to mitigate the air quality problems currently observed in Ulaanbaatar, Mongolia.

Review Paper for Characterization of Photoionization Detector-Direct Reading Monitors (산업현장에 활용되는 PID 직독식장비의 특성 고찰)

  • Sungho Kim;Hae Dong Park;Eunsong Hwang
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.93-102
    • /
    • 2023
  • Objectives: With the evolution of direct reading sensors, it is possible to monitor several substances through telecommunication. However, there are some limitations on the use of direct reading technologies in the Occupational Safety and Health Act in South Korea, which only applies to detector tubes, noise, heat, and carbon monoxides. The number of chemicals and their amount of use have been continuously increasing in South Korea. The Ministry of Employment and Labor (MoEL) has concerns about worker's health because exposure is only covered for about 1.2% of all distributed chemicals. Using a direct reading monitor with photoionization detectors (PID-DRMs), gases and vapors chemicals can be measured. Based on the data, business owners are able to create corrective strategies, provide better working routines, and select correct respiratory equipment. PID-DRMs are less expensive and easier to handle for an owner voluntarily controlling chemicals emitted in the workplace. However, there are several limitations on using these PID-DRMs to the degree that the MoEL has not been able to select a legal monitor. The aim of this study was to review previous studies related to PID-DRMs and identify the characterization and limitation on PID-DRMs. Methods: To search for related studies on PID-DRMs, key words were used including direct reading monitors/instruments and/or photoionization detectors. Through that, four domestic and 15 international studies were reviewed. Results: Studies on PID-DRMs were conducted by chamber (enclosed, dynamic, walk-in) and in the field (experimental environment, actual environment). The concentration of PID-DRMs and charcoal tubes were compared for a single substance or mixture, or within the PID-DRMs. There was a high correlation between the two concentrations, but it did not meet the accuracy criteria (95% confidence interval, within 25%) of the NIOSH technical report (2012). In addition, differences in measured values occurred according to environmental factors (temperature, humidity) and high concentration, and concentration values tended to be underestimated due to contamination of the sensor. As a way to improve the accuracy of PID concentration, it was proposed to use correction factors, charcoal tube-based correction factors, or to calibrate the PID-DRMs in the same environment as the workplace. Conclusions: PID-DRMs can likely be used by business owners for the purpose of voluntarily managing the workplace environment, and it is expected that it will be possible to use them as legal equipment if a PID sensor can be upgraded and the limitations of the sensor (temperature, humidity, high concentration evaluation, sensor pollution) can be overcome in the near future.

Estimating the Area of Damage Caused by Gas Pipeline Leakage in Subway Construction Zones (지하철역 공사지역 도시가스 배관 누출로 인한 피해면적 산정)

  • Yang, Yong-Ho;Lee, Jae-Wook;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.419-427
    • /
    • 2024
  • This study assessed the potential impact of gas leakage resulting from accidental damage to buried urban gas pipelines during perforating operation near subway construction sites. The risk of explosions due to ignition sources such as static electricity, arising from gas infiltrating the subway construction site through storm sewers and sewage pipes, was evaluated using the ALOHA program. The results of the threat zone calculation, which input various parameters of urban gas pipelines such as length, diameter, and pressure, indicated that the flammable area within the vapor cloud extended from 1.2 to 1.4 km (red zone), the blast area ranged from 0.8 to 1.0 km (yellow zone), and the jet fire extended from 45 to 61 m (red zone). This study demonstrates that within the flammable area of the vapor cloud, a specific combination of concentration and conditions can increase flammability. The blast area may experience explosions with a pressure of 1.0 psi, sufficient to break glass windows. In the event of a jet fire, high temperatures and intense radiant heat exposure lead to rapid fire propagation in densely populated areas, posing a high risk of casualties. The findings are presented in terms of the sphere of influence and threat zone ranges.

A Study on the Residual Compressive Strength of Concrete Mixed with Limestone Powder after Heating (석회석 미분말이 혼입된 콘크리트의 가열 후 잔류 압축강도에 관한 연구)

  • Choi, Youn-Sung;Kim, Gyu-Yong;Suh, Dong-Kyun;Eu, Ha-Min;Han, Seung-Hyeon;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.5
    • /
    • pp.553-563
    • /
    • 2024
  • In this research, the thermal properties of limestone fine powder at high temperatures were examined, followed by an analysis of its residual compressive strength when incorporated into concrete under various thermal conditions, to determine its impact on concrete subjected to high heat. The study revealed that at 900℃, limestone micropowder undergoes a decarbonization reaction, where calcium carbonate(CaCO3) decomposes into calcium oxide(CaO), accompanied by an expansion of the limestone powder as temperature increases. This expansion leads to material cracking or crushing starting at temperatures above 500℃. Further analysis on concrete mixed with limestone powder showed that heating up to 300℃ could promote the reaction of hydrates within the concrete, thereby enhancing its strength. However, exposure to temperatures beyond 500℃ causes the limestone powder within the concrete to crack or fracture, significantly reducing the concrete's strength properties. This study highlights the dual role of limestone fine powder in influencing concrete's behavior under high-temperature scenarios, demonstrating an initial strengthening effect followed by a detrimental impact at higher temperatures.

Development of a Climate Change Vulnerability Index on the Health Care Sector (기후변화 건강 취약성 평가지표 개발)

  • Shin, Hosung;Lee, Suehyung
    • Journal of Environmental Policy
    • /
    • v.13 no.1
    • /
    • pp.69-93
    • /
    • 2014
  • The aim of this research was to develop a climate change vulnerability index at the district level (Si, Gun, Gu) with respect to the health care sector in Korea. The climate change vulnerability index was esimated based on the four major causes of climate-related illnesses : vector, flood, heat waves, and air pollution/allergies. The vulnerability assessment framework consists of six layers, all of which are based on the IPCC vulnerability concepts (exposure, sensitivity, and adaptive capacity) and the pathway of direct and indirect impacts of climate change modulators on health. We collected proxy variables based on the conceptual framework of climate change vulnerability. Data were standardized using the min-max normalization method. We applied the analytic hierarchy process (AHP) weight and aggregated the variables using the non-compensatory multi-criteria approach. To verify the index, sensitivity analysis was conducted by using another aggregation method (geometric transformation method, which was applied to the index of multiple deprivation in the UK) and weight, calculated by the Budget Allocation method. The results showed that it would be possible to identify the vulnerable areas by applying the developed climate change vulnerability assessment index. The climate change vulnerability index could then be used as a valuable tool in setting climate change adaptation policies in the health care sector.

  • PDF

Expression profile of defense-related genes in response to gamma radiation stress (방사선 스트레스 반응 방어 유전자의 탐색 및 발현 분석)

  • Park, Nuri;Ha, Hye-Jeong;Subburaj, Saminathan;Choi, Seo-Hee;Jeon, Yongsam;Jin, Yong-Tae;Tu, Luhua;Kumari, Shipra;Lee, Geung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.359-366
    • /
    • 2016
  • Tradescantia is a perennial plant in the family of Commelinaceae. It is known to be sensitive to radiation. In this study, Tradescantia BNL 4430 was irradiated with gamma radiation at doses of 50 to 1,000 mGy in a phytotron equipped with a $^{60}Co$ radiation source at Korea Atomic Energy Research Institute, Korea. At 13 days after irradiation, we extracted RNA from irradiated floral tissues for RNA-seq. Transcriptome assembly produced a total of 77, 326 unique transcripts. In plantlets exposed to 50, 250, 500, and 1000 mGy, the numbers of up-regulated genes with more than 2-fold of expression compared that in the control were 116, 222, 246, and 308, respectively. Most of the up-regulated genes induced by 50 mGy were heat shock proteins (HSPs) such as HSP 70, indicating that protein misfolding, aggregation, and translocation might have occurred during radiation stress. Similarly, highly up-regulated transcripts of the IQ-domain 6 were induced by 250 mGy, KAR-UP oxidoreductase 1 was induced by 500 mGy, and zinc transporter 1 precursor was induced by 1000 mGy. Reverse transcriptase (RT) PCR and quantitative real time PCR (qRT-PCR) further validated the increased mRNA expression levels of selected genes, consistent with DEG analysis results. However, 2.3 to 97- fold higher expression activities were induced by different doses of radiation based on qRT-PCR results. Results on the transcriptome of Tradescantia in response to radiation might provide unique identifiers to develop in situ monitoring kit for measuring radiation exposure around radiation facilities.

Optimization of Anti-glycation Effect of ʟ-Carnitine, Pyridoxine Hydrochloride and ᴅʟ-α-Tocopheryl Acetate in an Infant Formula Model System Using Response Surface Methodology (ʟ-Carnitine, pyridoxine hydrochloride, ᴅʟ-α-tocopheryl acetate를 이용한 분유모델시스템의 마이얄반응생성물 저감화 조건 최적화)

  • Jung, Hye-Lim;Nam, Mi-Hyun;Hong, Chung-Oui;Pyo, Min-Cheol;Oh, Jun-Gu;Kim, Young Ki;Choi, You Young;Kwon, Jung Il;Lee, Kwang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.95-102
    • /
    • 2015
  • The Maillard reaction is a non-enzymatic reaction between amino and carbonyl groups. During milk processing, lactose reacts with milk protein through this reaction. Infant formulas (IFs) are milk-based products processed with heat-treatments, including spray-drying and sterilization. Because IFs contain higher Maillard reaction products (MRPs) than breast milk, formula-fed infants are subject to higher MRP exposure than breast milk-fed ones. In this study, we investigated the optimization of conditions for minimal MRP formation with the addition of $\small{L}$-carnitine ($\small{L}$-car), pyridoxine hydrochloride (PH), and $\small{DL}$-${\alpha}$-tocopheryl acetate (${\alpha}$-T) in an IF model system. MRP formation was monitored by response surface methodology using fluorescence intensity (FI) and 5-hydroxymethylfurfural (HMF) content. The optimal condition for minimizing the formation of MRPs was with $2.3{\mu}M$ $\small{L}$-car, $15.8{\mu}M$ PH, and $20.6{\mu}M$ ${\alpha}$-T. Under this condition, the predicted values were 77.4% FI and 248.7 ppb HMF.

A Study on Change in Cement Mortar Characteristics under Carbonation Based on Tests for Hydration and Porosity (수화물 및 공극률 관측 실험을 통한 시멘트모르타르의 탄산화 특성 변화에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Park, Sang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.613-621
    • /
    • 2007
  • Due to the increasing significance of durability, much researches on carbonation, one of the major deterioration phenomena are carried out. However, conventional researches based on fully hardened concrete are focused on prediction of carbonation depth and they sometimes cause errors. In contrast with steel members, behaviors in early-aged concrete such as porosity and hydrates (calcium hydroxide) are very important and may be changed under carbonation process. Because transportation of deteriorating factors is mainly dependent on porosity and saturation, it is desirable to consider these changes in behaviors in early-aged concrete under carbonation for reasonable analysis of durability in long term exposure or combined deterioration. As for porosity, unless the decrease in $CO_2$ diffusion due to change in porosity is considered, the results from the prediction is overestimated. The carbonation depth and characteristics of pore water are mainly determined by amount of calcium hydroxide, and bound chloride content in carbonated concrete is also affected. So Analysis based on test for hydration and porosity is recently carried out for evaluation of carbonation characteristics. In this study, changes in porosity and hydrate $(Ca(OH)_2)$ under carbonation process are performed through the tests. Mercury Intrusion Porosimetry (MIP) for changed porosity, Thermogravimetric Analysis (TGA) for amount of $(Ca(OH)_2)$ are carried out respectively and analysis technique for porosity and hydrates under carbonation is developed utilizing modeling for behavior in early-aged concrete such as multi component hydration heat model (MCHHM) and micro pore structure formation model (MPSFM). The results from developed technique is in reasonable agreement with experimental data, respectively and they are evaluated to be used for analysis of chloride behavior in carbonated concrete.

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.