• Title/Summary/Keyword: Heat Exchange Heater

Search Result 19, Processing Time 0.023 seconds

Analytical Investigation of In-direct Heater to Simulate Space Thermal Environment for Thermal Vacuum Test (열진공 시험용 비접촉식 우주 열환경 모사 장치의 해석적 검토)

  • Baek, Cheul-Woo;Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.178-183
    • /
    • 2012
  • To simulate space thermal environment in thermal vacuum test, direct or in-direct heater has been applied on the radiator. Both of them, direct heater attached on the radiator and indirect heater with a distance from the radiator, simulate the heat fluxes from the Sun radiation, the Earth IR and Albedo. They also supply the heat fluxes to the radiator of spacecraft to achieve the target temperature according to thermal test conditions. In general, indirect heater is used when the heater is not allowed to attach on the radiator directly due to constraints of coating property or contamination. For in-direct heater design, it is needed to estimate the heat power to make the extreme test conditions and minimize the interference with heat exchange of radiator and shroud. In this study, optimized thermal design of in-direct heater is proposed and investigated by commercial S/W SINDA. The effective values of design factors are also derived.

HEAT PIPE TYPE EXHAUST HEAT RECOVERY SYSTEM FOR HOT AIR HEATER

  • Kang, G.C.;Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.654-661
    • /
    • 2000
  • Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes, ${\emptyset}15.88{\times}600mm$ located in the rectangular box of $600{\times}550{\times}330mm$, a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to $-12^{circ}C$ respectively when air flow rate $1,100\textrm{m}^3/hr$. The exhaust gas temperature left the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about $60^{circ}C$ at the air flow rate of $1,100\textrm{m}^3/hr$. This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis.

  • PDF

A Study on Performance Analysis of the Bubble Pump in Solar Water Heater System (태양열 온수기 시스템에 적용된 기포펌프의 성능평가에 대한 연구)

  • Lee, Kwang-Sung;Li, Xuesong;Jin, Zhenhua;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2310-2315
    • /
    • 2008
  • In this paper, study on performance analysis of bubble pump on the domestic solar water heater system is presented. Device of this experiment is consisted of bubble pump, solar collector and heat exchanger. At the mean time, this system have attached temperature sensors and pressure sensors at bubble pump. In addition, the flow meter was installed at outlet of heat exchanger. And then result of experimental study, average value of the heat exchange amount in heat exchanger was about 7.9kcal/hr, the maximum value of the heat amount in water tank($0.4m^3$) was 489.7kcal/hr and the maximum value of the mass flow rate in bubble pump was about $0.5{\ell}/min$.

  • PDF

Analysis of Heat Transfer Characteristics in Soil for Development of a Geothermal Heat Exchange System (지열 열교환시스템 개발을 위한 지중 열유동 특성분석)

  • Lee Y. B.;Cho S. I.;Kang C. H.;Jung I. K.;Lee C. G.;Sung J. H.;Chung S. O.;Kim Y. B.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.185-191
    • /
    • 2005
  • Importance of alternative energy has been increasing due to environmental issues and lack of fossil fuels. In addition, heating cost that occupies from 30 to $40\%$ of the total production cost in the protected cultivation sector in Korea needs to be reduced for profitability and global competition. But, study on geothermal energy to solve these problems has not been activated for Korean protected cultivation. This study was conducted to develop an optimized geothermal exchange system through fundamental test of heat transfer characteristics in soil such as thermal diffusivity, changes in soil temperature during heating and cooling operations, and restorations of soil temperature after the heater was fumed off, These issues were investigated using computer simulation for different depths. The simulated characteristics were evaluated through controlled tests. Simulated characteristics of heat transfer in the soil at different depths showed a reasonable agreement with the results of the controlled tests. All of computer simulation and controlled tests, soil temperatures changed at 10cm and 20cm distance from pipe. but don't change at more than 30cm distance. It means that distances of heat transfer of the soil ranged from 20 to 30cm a day. Based on these results, the optimum spacing between adjacent heat exchange pipes and the pitch were selected as 50 and 40cm, respectively.

Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2184-2194
    • /
    • 2021
  • The Free-Piston Stirling engine (FPSE) is of interest for many research in aerospace due to its advantages of long operating life, higher efficiency, and zero maintenance. In this study, a 1-kW FPSE was proposed by analyzing the requirements of Space Reactor Power Systems (SRPS), of which performance was evaluated by developing a code through the Simple Analysis Method. The results of SAM showed that the critical parameters of FPSE could satisfy the designed requirements. The heater of the FPSE was designed with the copper rectangular fins to enhance heat transfer, and the parametric study of the heater was performed with Computational Fluid Dynamics (CFD) software STAR-CCM+. The Performance Evaluation Criteria (PEC) was used to evaluate the heat transfer enhancement of the fins in the heater. The numerical results of the CFD program showed that pressure drop and Nusselt number ratio had a linear growth with the height of fins, and PEC number decreased as the height of fins increased, and the optimum height of the fin was set as 4 mm according to the minimum heat exchange surface area. This paper can provide theoretical supports for the design and numerical analysis of an FPSE for SRPSs.

Experimental Study on Heat Transfer Performance of Plate Type Absorber with Variation of Solution Flow Rate (용액유량에 따른 플레이트 흡수기의 흡수 열전달 특성 실험)

  • Moon, C.G.;Bang, G.S.;Kim, J.D.;Yoon, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1548-1553
    • /
    • 2003
  • An experimental study of the absorption process of water vapor into a lithium bromide solution was performed. For the purpose of development of high performance absorption chiller/hater utilizing lithium bromide solution as working fluid, it is the most effective to improve the performance of absorber with the largest heat transfer area of the four heat exchangers. The experimental apparatus was composed of a plate type absorber which can increase the heat exchange area per unit volume to investigate more detail characteristics instead of the conventional type, horizontal tube bundle type. The size of plate absorbers were made for $0.4m{\times}0.6m$ and the design object of a refrigeration capacity was lRT. In this experiment, three kind plate absorbers which were flat plate, dimple plate and groove plate were used. The results were less than the design object values, that is, the refrigeration capacity was about $0.3{\sim}0.4RT$ and the overall heat transfer coefficient was $500{\sim}600kcal/m^2h^{\circ}C$ at the standard conditions.

  • PDF

Experimental Study on Heat Transfer Performance of Absorber with Variable Plate Types

  • M.A. Sarker;Moon, C.G.;Lee, H.S.;Kim, E.P.;Yoon, J.I.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.05a
    • /
    • pp.201-212
    • /
    • 2004
  • An experimental study of the absorption process of water vapor into a lithium bromide solution was performed. For the purpose of developing high performance absorption chiller/hater utilizing lithium bromide solution as working fluid, it is important to improve the performance of absorber with the larger heat transfer area of the four heat exchangers. The experimental apparatus was composed of a plate type absorber which could increase the heat exchange area per unit volume to investigate more detail characteristics instead of the conventional type, that is, horizontal tube bundle type. The size of plate absorbers were made for 0.4m$\times$0.6m and the design objective of a refrigeration capacity was 1RT. In this experiment, three kinds of plate absorbers namely flat plate, dimple plate and groove plate were used. The obtained results were less than the design objective values, that is, the refrigeration capacity was about 0.3 ~0.4RT and the overall heat transfer coefficient was 500~600 kcal/$m^2$h$^{\circ}C$ at the standard conditions.

  • PDF

Heating and cooling properties in cultivation room and cultural characteristics of oyster mushroom according to type of air exchange (외부공기 유입방식에 따른 느타리버섯 생육실의 온도변화 및 자실체의 생육특성)

  • Jang, Myoung-Jun;Lee, Yun-Hae;Ju, Young-Cheol
    • Journal of Mushroom
    • /
    • v.11 no.4
    • /
    • pp.214-218
    • /
    • 2013
  • This study was carried out to find out suitable input method for air exchange about bottle cultivation of oyster mushroom. There was no difference of average temperature in cultivation room, but T1(direct introduction of outside air) was higher than T2(heat exchanger) and T3(air buffer) in the standard deviation. The ratio of cooling operating was the highest in August and in the descending order, T1 54%, T3 43%, T2 33%. At ratio of energy reduction, T2 and T3 were higher than T1. The operating ratio of heater was highest in January and in the descending order, T1 53%, T3 37%, T2 30%. At ratio of energy reduction(%), T2 and T3 were higher than T1 similar to result of cooling operating. Therefore there were largest in August about Cooling Degree-Hour and in January about Heating Degree-Hour. And fruitbody yields quality was excellent in T2 and T3 than T1. The suitable effective type of air exchange in oyster mushroom cultivation are heat exchange and air buffer system.

Optimal design and real application of nonlinear PID controllers (비선형 PID 제어기의 최적 설계및 실제 적용)

  • Lee, Moon-Yong;Koo, Doe-Gyoon;Lee, Jong-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.639-643
    • /
    • 1997
  • This paper presents how nonlinear PID control algorithms can be applied on chemical processes for a more stable operation and perfect automation. A pass balance controller is designed to balance the exiting temperatures of a heater and a heat exchange network. The proposed controller has gain-varying integral action and deals with the operational constraints in an efficient manner. Also, the use of a PID gap controller is proposed to maximize energy saving and operation stability and to minimize operator intervention in operation of air fan coolers. The proposed controller adjusts the opening of a louver automatically in such a way that it keeps the air fan pitch position within the desired range. All these nonlinear PID controllers have been implemented on the distributed control system (DCS) for good reliability and operability. Operator acceptance was very high and the implemented controllers have shown good performance and high service factor still now on. The proposed methodology can be directly applied to similar processes without any modification.

  • PDF