• Title/Summary/Keyword: Heat Emission

Search Result 921, Processing Time 0.027 seconds

Ecosystem Service Valuation on Groundwater Storage Capacity by Biotope Type (지하수저류량 평가를 통한 비오톱 유형별 생태계서비스 효과 분석)

  • Kang, Deok-Ho;Park, In-Hwan;Kim, Jin-Hyo;Lee, Soon-Ju;Kwon, Oh-Sung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.5
    • /
    • pp.1-13
    • /
    • 2017
  • Recently, due to worldwide industralization and urbanization, natural environment has been severly damaged and global warning is worsening. Heat wave, torrential rainfall, typhoon and other natural disasters continuously occur due to global warming. Policies such as carbon emission regulation are taken into effect to solve such problems. Such global trend has affected interest to natural ecosystem and developed as a concept of ecosystem-services. This study particularly focused on ground water storage capacity among various ecosystem-services such as climate control and soil formation. It is because Korea suffers from drought and flood every year. Therefore, this study aims to understand objective numerical value of ecosystem-services value regarding ground water storage capacity of biotop classes based on relationship among precipitation, amount of evapotranspiration, and runoff of 7 regions of Chilgok-gun, Gyeongsangbuk-do and to convert the value into economic value. The study calculated ground water storage capacity based on relationship among precipitation, amount of evapotranspiration, and run off. Calculated amount of each capacity was 29.26 million ton($30.2mm/m^2$), 430.46 million ton($140.4mm/m^2$), 11.30 million ton($150.1.0mm/m^2$), 33 milion ton($3.0mm/m^2$). Economical value of ecosystem-service by each biotop classes appeared 4,128,800 thousand KRW ($21.32KRW/m^2$) for agricultural biotop, and 60,403,600 thousand KRW ($98.52KRW/m^2$) for forest biotop, 1,572,800 thousand KRW ($104.4KRW/m^2$) for grassland biotop, and 47,600 thousand KRW ($2.18KRW/m^2$) for bare ground biotop. The result of this study like above, it will be used as important evidentiary material to preserve natural resource effectively from various development business and policies that damages natural eco-system. Also, it is judged that ecosystem-service value by each land coverage will be used as important material for preparing legalistic institution such as establishing natural environment preservation plan, budget for alternative forest resource creation cost.

Hydrogen Production from Photocatalytic Splitting of Water/Methanol Solution over a Mixture of P25-TiO2 and AgxO (산화은/이산화티타늄 혼합물을 광촉매로 활용한 물/메탄올 분해 수소제조)

  • Kim, Kang Min;Jeong, Kyung Mi;Park, No-Kuk;Lee, Tae Jin;Kang, Misook
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • A photocatalyst which mixed by the commercialized P25-TiO2 and a synthesized AgxO was used in an appropriate weight ratio to effectively produce hydrogen gas in this study. The AgxOs were synthesized with the conventional sol-gel method, and tetramethylammonium hydroxides were added at the synthesis process in order to stabilize the solutions, and then the solutions were heat-treated at the temperatures of -5, 25, and 50 ℃, resulted to obtain the three types of silver oxides. Physicochemical properties of the synthesized AgxOs were identified through X-ray diffraction analysis (XRD), scanning emission microscopy (SEM), ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). In the photolysis results of water/methanol (weight ratio 1:1) solution, the mixture of P25-TiO2/AgxO exhibited a significantly higher hydrogen gases evolution, compared to that of pure P25-TiO2. Additionally, the addition of H2O2 as an supplement oxidant and in AgxO synthesized at 50 ℃ improved the hydrogen production efficiency. In particular, the emitted hydrogen gases reached to 13,000 μmol during 8 hours when a mixed catalyst, AgxO of 0.1 g and P25-TiO2 of 0.9 g, were used.

Fundamental Properties of Fly ash Concrete Containing Lightly Burnt MgO Powder (저온 소성한 MgO 분말을 함유한 플라이애시 콘크리트의 기본 물성)

  • Choi, Seul-Woo;Jang, Bong-Seok;Lee, Kwang-Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.475-481
    • /
    • 2013
  • Although the lightly burnt MgO at $850{\sim}1000^{\circ}C$ has expansibility, it does not lead to unsound concrete. The expansion of MgO could compensate for shrinkage of concrete for a long-term, because the hydration of MgO occurs at a slow pace. Recently, the study and application of mineral admixture such as fly ash and blast furnace slag have increased for the hydration heat reduction, durability improvement, and reducing $CO_2$ emission in the construction industry. Thus, it is necessary to research on the concrete that contains both a mineral admixture and MgO as an expansion agent. This study investigates fundamental properties of fly ash concrete with lightly burnt MgO through various experiments. The adiabatic temperature test results showed that the fly ash concrete with MgO of the 5% replacement ratio had the slower pace of the temperature rise and the lower final temperature than the fly ash concrete. The influences of MgO on long-term compressive strength varied depending on water-binder ratio, and the long-term length change test results indicated the expansion effects of the FA concrete containing MgO.

Studies on the fabrication and properties of $La_ 0.7Sr_0.3MnO_3$cathode contact prepared by glycine-nitrate process and solid state reaction method for the high efficient solid oxide fuel cells applications 0.3/Mn $O_{3}$ (고효율 고체산화물 연료전지 개발을 위한 자발 착화 연소 합성법과 고상반응법에 의한 $La_ 0.7Sr_0.3MnO_3$ 양극재료 제조 및 물성에 관한 연구)

  • Shin, Woong-Shun;Park, In-Sik;Kim, Sun-Jae;Park, Sung
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders were prepared by both GNP(Glycine-Nitrate Process) and solid state reaction method in various of calcination temperature(800-1000.deg. C) and time in air. Also, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contacts on YSZ(Yttria-Stabilized Zirconia) substrate were prepared by screen printing and sintering method as a function of sintering temperature(1100-1450.deg. C) in air. Sintering behaviors have been investigated by SEM(Scanning Electron Microscope) and porosity measurement. Compositional and structural characterization were carried out by X-ray diffractometer and ICP AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) analysis. Electrical characterization was carried out by the electrical conductivity with linear 4 point probe method. As the calcination period increased in solid state reaction method, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ phase increased. Although L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ single phase was obtained only for 48hrs at 1000.deg. C, in GNP method it was easy to get single and ultra-fine L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders with submicron particle size at 650.deg. C for 30min. The particle size and thickness of L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contact by solid state reaction method did not change during the heat treatment, while those by GNP method showed good sintering characteristics because initial powder size fabricated from GNP method is smaller than that fabricated from solid state reaction method. Based on enthalpy change from thermodynamic data and ICP-AES analysis, it was suggested to make cathode contact in composition of (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$ Mn $O_{3}$ which have little second phase (L $a_{2}$Z $r_{2}$ $O_{7}$) for high efficient solid oxide fuel cells applications. As (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$Mn $O_{3}$ cathode contact on YSZ substrate was sintering at 1250.deg. C the temperature that liquid phase sintering did not occur. It was possible to obtain proper cathode contacts with electrical conductivity of 150(S/cm) and porosity content of 30-40%.m) and porosity content of 30-40%.

  • PDF

A Study on the Characteristic of Conversion Efficiency for Three-way Catalyst in Hydrogen-Natural Gas Blend Fueled Engine (수소-천연가스 혼합연료 엔진의 삼원촉매 전환효율 특성 연구)

  • Park, Cheol-Woong;Yi, Ui-Hyung;Kim, Chang-Gi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • The conventional natural gas engine realized lean combustion for the improved efficiency. However, in order to cope with exhaust gas regulations enforced gradually, the interest has shifted at the stoichiometric mixture combustion system. The stoichiometric mixture combustion method has the advantage of a three-way catalyst utilization whose purification efficiency is high, but the problem of thermal durability and the fuel economy remains as a challenge. Hydrogen-natural gas blend fuel (HCNG) can increase the rate of exhaust gas recirculation (EGR) because the hydrogen increases burning speed and lean flammability limit. The increase in the EGR rate can have a positive impact on heat resistance of the engine due to the decreased combustion temperature, and further can increase the compression ratio for efficient combustion. In this study, to minimize the exhaust emission developed HCNG engine with stoichiometric combustion method, developed three-way catalyst was applied to evaluate the conversion characteristics. The tests were carried out during the steady state and transient operating conditions, and the results were compared for both the conventional and proto-three-way catalyst of HCNG engine for city buses.

Precipitation behaviors of Cs and Re(/Tc) by NaTPB and TPPCl from a simulated fission products-$(Na_2CO_3-NaHCO_3)-H_2O_2$ solution (모의 FP-$(Na_2CO_3-NaHCO_3)-H_2O_2$ 용액으로부터 NaTPB 및 TPPCl에 의한 Cs 및 Re(/Tc)의 침전 거동)

  • Lee, Eil-Hee;Lim, Jae-Gwan;Chung, Dong-Yong;Yang, Han-Beum;Kim, Kwang-Wook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.115-122
    • /
    • 2010
  • In this study, the removal of Cs and Tc from a simulated fission products (FP) solution which were co-dissolved with U during the oxidative-dissolution of spent fuel in a mixed carbonate solution of $(Na_2CO_3-NaHCO_3)-H_2O_2$ was investigated by using a selective precipitation method. As Cs and Tc might cause an unstable behavior due to the high decay heat emission of Cs as well as the fast migration of Tc when disposed of underground, it is one of the important issues to removal them in views of the increase of disposal safety. The precipitation of Cs and Re (as a surrogate for Tc) was examined by introducing sodium tetraphenylborate (NaTPB) and tetraphenylphosponium chloride (TPPCl), respectively. Precipitation of Cs by NaTPB and that of Re by TPPCl were completed within 5 minutes. Their precipitation rates were not influenced so much by the temperature and stirring speed even if they were increased by up to $50^{\circ}C$ and 1,000 rpm. However, the pH of the solution was found to have a great influence on the precipitation with NaTPB and TPPCl. Since Mo tends to co-precipitate with Re at a lower pH, especially, it was effective that a selective precipitation of Re by TPPCl was carried out at pH of above 9 without co-precipitation of Mo and Re. Over 99% of Cs was precipitated when the ratio of [NaTPB]/[Cs]>1 and more than 99% of Re, likewise, was precipitated when the ratio of [TPPCl]/[Re]>1.

Evaluation of the Burning Properties of Various Carpet Samples by using the Cone Calorimeter and Gas Toxicity Test (콘칼로리미터와 가스유해성 시험법을 이용한 카페트류의 연소특성 평가)

  • Lee, Bong-Woo;Kwon, Seong-Pil;Lee, Jang-Won;Lee, Byoung-Ho;Kim, Hee-Soo;Kim, Hyun-Joong
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • In this study, the burning behaviours of five different kinds of carpet samples covered with nylon, PP (polypropylene), PTT (poly(trimethylene terephthalate)), wool fabric and NW (nylon and wool) were evaluated by using the cone calorimeter having a radiant flux of 50kW/$m^2$. And the combustion gas toxicity was evaluated according to KS F 2271 test method. As a result of the cone calorimeter test (KS F ISO 5660-1), nylon carpet samples were ignited most easily. In ignition ability or initial flammability, NW carpet samples showed the highest value. In heat release rate (HRR), fire intensity, PP carpet samples were larger than any other samples. Nylon carpet samples were the highest smoke production rate, while N/W carpet samples the lowest. The following were in mass loss rates: NW > wool > nylon > PP > PTT. CO (carbon monoxide) was one of the most toxic gases released from the combustion. PTT carpet samples gave rise to the highest CO concentration, while NW carpet samples the lowest. In addition, PP carpet samples caused the highest $CO_2$ (carbon dioxide) concentration, while NW carpet samples the lowest. Toxicity of the gas produced from carpet samples was determined by the mouse stop motion, and it resulted in the fact that the combustion gas of PTT carpet samples was more toxic than that of any other samples.

Combustion Characteristics of Bio Emulsion Fuel (바이오에멀젼 연료의 연소 특성)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1421-1432
    • /
    • 2018
  • Water soluble oil was obtained from the pyrolysis of coconut waste as a biomass at $600^{\circ}C$. It was studied that the combustion characteristics of bio-emulsion fuel by mixing and emulsifying 15~20% of water soluble oil which obtained from pyrolysis of coconut waste as a biomass and MDO(marine diesel oil) as a marine fuel. Engine dynamometer was used for detecting emissions, temperature, and power. The temperature of combustion chamber was decreased because the moisture in bio-emulsion fuel deprived of heat of evaporation in combustion chamber. While combustion, micro-explosion took place in the combustion chamber by water in the bio-emulsion fuel, MDO fuel scattered to micro particles and it caused to smoke reduction. The temperature reduction of combustion chamber by using bio-emulsion fuel reduced the NOx emission. The increasing of bio-oil content caused increasing water content in bio-emulsion fuel so total calorific value was reduced. So the characteristics of power was decreased in proportion to using the increasing amount of bio-emulsion fuel. Heavy oil as a marine fuel exhausts a lot of smoke and NOx. We expect that we can reduce the exhaust gas of marine engine such as smoke and NOx by using of bio-emulsion fuel as a marine fuel.

Treatment Technology of N2O by using Bunsen Premixed Flame (분젠 예혼합 화염을 활용한 아산화질소 처리기술에 관한 연구)

  • Jin, Si Young;Seo, Jaegeun;Kim, Heejae;Shin, Seung Hwan;Nam, Dong Hyun;Kim, Sung Min;Kim, Daehae;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.153-160
    • /
    • 2021
  • Nitrous oxide is a global warming substance and is known as the main cause of the destruction of the ozone layer because its global warming effect is 310 times stronger than carbon dioxide, and it takes 120 years to decompose. Therefore, in this study, we investigated the characteristics of NOx emission from N2O reduction by thermal decomposition of N2O. Bunsen premixed flames were adopted as a heat source to form a high-temperature flow field, and the experimental variables were nozzle exit velocity, co-axial velocity, and N2O dilution rate. NO production rates increased with increasing N2O dilution rates, regardless of nozzle exit velocities and co-axial flow rates. For N2O, large quantities were emitted from a stable premixed flame with suppressed combustion instability (Kelvin Helmholtz instability) because the thermal decomposition time is not sufficient with the relatively short residence time of N2O near the flame surface. Thus, to improve the reduction efficiency of N2O, it is considered effective to increase the residence time of N2O by selecting the nozzle exit velocities, where K-H instability is generated and formed a flow structure of toroidal vortex near the flame surface.

Techno-economic Analysis and Environmental Impact Assessment of a Green Ammonia Synthesis Process Under Various Ammonia Liquefaction Scenarios (암모니아 액화 시나리오에 따른 그린암모니아 합성 공정의 경제성 및 환경 영향도 평가)

  • Gunyoung Kim;Yinseo Song;Boram Gu;Kiho Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.163-172
    • /
    • 2024
  • In this study, two different scenarios for ammonia liquefaction in the green ammonia manufacturing process were proposed, and the economic-feasibility and environmental impact of each scenario were analyzed. The two liquefaction processes involved gas-liquid separation before cooling at high pressure (high pressure cooling process) or after decompression without the gas-liquid separation (low pressure cooling process). The high-pressure cooling process requires higher capital costs due to the required installation of separation units and heat exchangers, but it offers relatively lower total utility costs of 91.03 $/hr and a reduced duty of 2.81 Gcal/hr. In contrast, although the low-pressure cooling process is simpler and cost-effective, it may encounter operational instability due to rapid pressure drops in the system. Environmental impact assessment revealed that the high-pressure cooling process is more environmentally friendly than the low-pressure cooling process, with an emission factor of 0.83 tCO2eq less than the low-pressure cooling process, calculated based on power usage. Consequently, the outcomes of this study provide relevant scenario and a database for green ammonia synthesis process adaptable to various process conditions.