• Title/Summary/Keyword: Heat Control

Search Result 3,689, Processing Time 0.037 seconds

A Study on the Method of Estimating Optimum Supply Water Temperature Considering the Heating Load and the Heat Emission Performance of Radiant Floor Heating Panel (난방부하와 온수온돌의 방열성능을 고려한 적정 공급온수온도 산출방법에 관한 연구)

  • Choi, Jeong-Min;Lee, Kyu-Nam;Ryu, Seong-Ryong;Kim, Yong-Yee;Yeo, Myoung-Souk;Kim, Kwang-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.795-800
    • /
    • 2006
  • A common approach to achieve better thermal comfort with hydronic radiant floor heating system is supply water temperature control. This is the control method through which supply water temperature is varied with outdoor temperature. In this study, a comprehensive, yet simple calculation method to find optimum supply water temperature is evaluated by combining heat loss from the building and heat emission from the hydronic radiant floor heating system. And then the control performance of suggested calculation method is confirmed through experiment. It is shown that indoor air temperature is stably maintained around the set point.

  • PDF

An Experimental Study on the Heat Transfer Characteristics of Two-phase closed Thermosyphon (밀폐형 2상 열사이폰의 열전달 특성에 관한 실험적 연구)

  • Cho, Ki-Hyun;Paek, Yee;Chung, Hyung-Kil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.165-171
    • /
    • 2002
  • The thermosyphon has been used as a heat transmission device in the heat recovery of low level energy and cooling for heat generating equipments. Many studies on the working fluids and wicks have been reported to improve the heat transfer efficiency of the thermosyphon. A low temperature heat pipe with acetone is chosen in the present study to compare the heat transfer characteristics due to pouring amount of working fluid, magnitude of power supplied and tilt angles. The thermosyphon made ⵁ$15.88{\times}0.8t{\times}600mm$ of copper, evaporation section 200mm, insulation section 25mm, condensation 375mm. Heat transfer rate of the thermosyphon increase as magnitude of power supplied increase and observe dry out phenomenon at 5~10% of pouring amount of working fluid. So thermosyphon at the 150kJ/s judged to need 12% or more. Heat transfer rate of the thermosyphon have nothing to do with tilt angles. Dry out phenomenon of the thermo syphon makes it possible that a low temperature thermosyphon may be used to control temperature and heat transfer of a system when the critical quantity of a working fluid is supplied in the thermosyphon.

  • PDF

Development of Heat Pump System for High Efficiency Engine Vehicle (고효율엔진 차량 히트펌프 시스템 개발)

  • Park, Byung-Duck;Won, Jong-Phil;Lee, Won-Suk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • As DDI or GDI engine discharges very low heat due to its high thermal efficiency, the heat source is not enough for heating the passenger compartment in cold climate condition. To remedy the heating problem, the conventional HFC-134a automotive air-conditioning system has been attempted to run as a heat pump mode. Futhermore, an auxiliary electric heater of new type was equipped to the heat pump air-conditioning loop as a new approach. Hence, a proto-type heat pump air conditioner has been made and tested to investigate the feasibility of the HFC-134a automobile air-conditioning system that could be worked as a heat pump. The experiment results showed that the sufficient heating capacity could be obtained by adding a heat pump with an new electric type auxiliary heater into the conventional heat core in low temperature condition.

  • PDF

Condensation Heat Transfer and Pressure Drop of R245fa in a Plate-shell Heat Exchanger (Plate-shell 열교환기에서 R245fa의 응축열전달 및 압력강하 특성에 관한 연구)

  • Kim, Sung Woo;Baek, Changhyun;Song, Kang Sub;Kim, Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.12
    • /
    • pp.495-501
    • /
    • 2016
  • Condensation heat transfer and pressure drop of R245fa were investigated experimentally in a plate-shell heat exchanger which consisted of thirty seven counter flow channels formed by thirty-eight plates with a chevron angle of $50^{\circ}$. The upflow of the water in one channel receives heat from the downflow of R245fa in the other. The effects of refrigerant mass flux, imposed heat flux, refrigerant saturation pressure, and mean vapor quality on the heat transfer characteristics were explored in detail. Experimental correlations were proposed to predict the condensation heat transfer coefficient and friction factor in terms of the Boiling number, Reynolds number, and Prandtl number. In the experiments, the mean vapor quality in the refrigerant channel was varied from .22 to .82, mass flux from 3 to $5kg/m^2$, imposed heat flux from 1 to $3kW/m^2$, and system pressure from .61 to .81 MPa.

A Study of Monitoring and Control Model of Closed Cycle Diesel Propulsion System using Microprocessor ($\mu$-processor를 이용한 폐쇄사이클 디젤추진시스템의 모니터링 및 제어모델에 관한 연구)

  • 유춘식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.894-905
    • /
    • 2004
  • The closed cycle diesel propulsion system is free from the problem of the intake air, exhaust gas and their control that are associated with the conventional diesel propulsion system. The system is composed of a main engine, an exhaust cooler. a $CO_2$ scrubber and a $O_2$ mixer. In this paper, a hardware using microprocessor is proposed in order to monitor and control the oxygen and ratio of specific heat for underwater diesel propulsion system. Also simulation is carried out to ascertain the performance of proposed system.

Robust Control of Pneumatic Cylinder Driving System using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 공기압 실린더 구동장치의 강인제어)

  • Jang, Ji-Seong;Han, Seung-Hun
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.101-109
    • /
    • 2017
  • The pneumatic driving system has advantages such as high output power per weight and low heat generation rate. However, it is difficult to control the position because of its strong non-linearity such as large friction forces compared to driving force, and heat transfer characteristics that change during operation. Therefore, in order to achieve the control objectives, a robust controller should be designed considering modeling error and model uncertainty. In this paper, a sliding mode controller is designed to improve the position control performance of pneumatic cylinder driving system. Experimental results show that the designed controller achieves the designed control objectives even if the model of the cylinder driving system, such as the initial pressure inside the cylinder and the initial position of the piston is changed.

Energy Saving Effect of ERV(Energy Recovery ventilator) with Economizer Control in Residential Building (Economizer cycle control을 채용한 전열교환시스템의 에너지 절감효과 분석 -국내 공동주택을 대상으로-)

  • Park, Jae-Hyung;Kim, Joo-Wook;Song, Doo-Sam;Yoon, Ho-Young;Kim, Sung-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.679-684
    • /
    • 2009
  • ERV system has installed in almost newly constructed residential building in Korea. Heat recovery features of ERV can be possible to decrease the heating and cooling load caused by ventilation. However, in case of the outdoor condition is favorable to control the indoor air, the heat recovery function of ERV does more harm than good in term of cooling load. In this study, the ERV with economizer cycle control for residential building is suggested and the performance of the suggested system will be analyzed using TRNSYS.

  • PDF

INSTRUMENTATION AND CONTROL STRATEGIES FOR AN INTEGRAL PRESSURIZED WATER REACTOR

  • UPADHYAYA, BELLE R.;LISH, MATTHEW R.;HINES, J. WESLEY;TARVER, RYAN A.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.148-156
    • /
    • 2015
  • Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs) that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C) strategies for a large 1,000 MWe iPWR is described. Reactor system modeling-which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum-is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

Improved Hysteresis Current Control Regulator for High-efficiency Switching (고효율 스위칭을 위한 개선된 히스테리시스 전류제어기)

  • Hong, Sun-Ki;Park, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1606-1610
    • /
    • 2012
  • Hysteresis current regulator has been used widely because of its simple principle and structure. However, when the current band width is too narrow or the applied voltage is relatively too high, the switching frequency may increase abruptly and it generates a large amount of heat. Thus, this study will suggest a better and simple method to reduce the switching frequency. For single phase current control, the proposed hysteresis current control is executed by adding 0 mode state and comparing the slope of the current reference. This simple method decreases the generated switching frequency and significantly reduces the generated heat. This proposed method was proved with simulations and experiments comparing with the classical hysteresis current control method.

Fundamental Characteristics of Crack Control for Concrete Used in Fluosilicate Salt Based Anti-crack Agent (규불화염계 균열저감제를 이용한 콘크리트의 균열제어특성)

  • Kang Sung Woong;Yang Il Seung;Han Byung Chan;Kim Do Soo;Kil Bae Soo;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.289-292
    • /
    • 2004
  • This study was performed to know effective control of crack occurred by hydration heat, restraint of multiplication of hydration heat, through mechanical test, strength test and crack control test using fluosilicate salt based anti-crack agent made from by-product during phosphoric acid manufacturing process. Mix proportions for experiment were modulated at 0.495 of water to cement ratio and addition amount of fluosilicate salt based anti-crack agent to $1.0\%$. Condensation time was late and compressive strength of hardened concrete cured at several days was executed to evaluate characteristics of crack control for concrete. It is ascertained that characteristics of crack control for concrete could be improved by an adequate addition of fluosilicate salt based anti-crack agent.

  • PDF