• Title/Summary/Keyword: Heat Control

Search Result 3,689, Processing Time 0.031 seconds

Application of Heat Pipe for Hydration Heat Control of Mass Concrete (매스콘크리트의 수화열 저감을 위한 히트파이프의 현장적용성에 관한 연구)

  • Baek, Dong-Il;Kim, Myung-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.157-164
    • /
    • 2008
  • In order to raise efficiency in construction, construction period, construction costs etc. that have been problematic in the methods of hydration heat reduction thus far, this study has developed a new method. The principle of the developed construction method involves the laying of a heat conducting medium such as the heat pipe in the concrete, and through the fast conduction of heat by the heat pipe, the hydration heat occurring within the mass concrete is transferred to the exterior by which the internal hydration heat is reduced. If the study results of the onsite test are summarized, on application of existing hydration heat reduction methods, the highest temperature was reached in about 2$\sim$4 days, but when the heat pipe of this study was used, the period was reduced to within 24 hours. Moreover, when the thermal crack index was calculated with the method using the heat pipe as developed in this study, a value of 1.2 or higher was revealed, which is a level that can restrict the occurrence of cracks. Therefore, when the hydration heat control method using the heat pipe as developed in this study is applied, not only the effects of construction efficiency and reduction in construction period, but also outstanding economical effects can be expected.

Regulation of Heat-Stable Enterotoxin Production in Escherichia coli -1. Effeets of Phosphate, Ammonia, Glucose, and Glucose Metabolites on the Heat-Stable Toxin Production by Enterotoxigenic Escherichia coli- (대장균의 내열성장독소 생산조절기전 -I. 장독성대장균의 내열성장독소생산에 인산염, 암모니아, 포도당 및 포도당 대사산물이 미치는 영향-)

  • Kim, Ik-Sang;Hong, Tae-Yee;Lee, Woo-Kon;Chang, Woo-Hyun
    • The Journal of the Korean Society for Microbiology
    • /
    • v.20 no.1
    • /
    • pp.55-63
    • /
    • 1985
  • Phosphate, ammonia, glucosamine, glucose, pyruvate, succinate, fumarate, malate and acetate were examined for their ability to control the heat-stable enterotoxin (ST) production in succinate salts medium or in M9 medium. The results obtained were summerized as follows. 1. When the initial phosphate concentration was adjusted to 1.0mM, ST production was decreased to 80u/ml or less. But when the initial phosphate concentration was adjusted to 64mM or 100mM, enterotoxin production was 320u/ml. 2. When the initial ammonia concentration in the medium was adjusted to 1.0mM, no ST production and cell growth were observed. But when ammonia concentration was adjusted to 10mM, 19mM, 38mM or 76mM, enterotoxin production was 320u/ml. 3. Among carbon sources, glucosamine, glucose, pyruvate, succinate, fumarate, malate and acetate, acetate supported the highest specific production (928 unit/O.D.) of heat-stable enterotoxin. From this results, we could assume that heat-stable enterotoxin production is controlled by stringent control mechanism. 4. When the pH of the succinate salts medium was kept between 6.2 to 6.5, no heat-stable enterotoxin production was observed, but when the pH of the medium was kept between pH 6.2 to 6.5, 267 unit/O.D. of heat-stable enterotoxin was produced. 5. Glucose inhibited the heat-stable enterotoxin production and the mechanism was assumed due to its capacity to lower the pH of the medium during catabolysis and its high metabolic energy.

  • PDF

Development of an Integrated Calorimeter Using Temperature Control Signals of a Bioreactor and On-line Measurement of Metabolic Heat of a Microbial Cultivation (발효조의 온도제어 신호를 이용한 직접열량계의 개발 및 대사열량의 온라인 측정)

  • Hong, Geon-Pyo;Heo, Won
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.543-549
    • /
    • 1999
  • For development of an integrated calorimetric bio-reactor to measure the metabolic heat dissipated during cell growth, a 5 liter jar fermenter was modified to measure the pulse length of automatic temperature control signals to set heater on and off, and the to send them to computer to calculate the cumulative heat supplied. Cumulative heats for the calorimetric reactor in the absence of cell growth, were measured with varying conditions. The heat loss by the aeration was 30.9 kJ/vvm and the loss to ambient air was 10.5 kJ/L/hr/$^{\circ}C$. Cumulative heat was measued within $\pm$0.2% when testing with a small electri heater submerged in the reactor. Metabolic heat was measured to be 0.76 and 0.76 and 11.4kJ per g consumption of glucose during cultivation of S. cerevisiae and E. coli, respectively.

  • PDF

Antioxidants Supplementation on Acid Base Balance during Heat Stress in Goats

  • Sivakumar, A.V.N.;Singh, G.;Varshney, V.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1462-1468
    • /
    • 2010
  • The effects of vitamin C and vitamin E with selenium on acid-base balance and some stress hormones were evaluated during heat stress in goats. Goats, 1.5 years of age, were divided into control, heat stress and antioxidant treatment groups 1, 2 and 3. Except for the control, all groups were exposed to a temperature of $40{\pm}2^{\circ}C$ with a relative humidity of 30% for 5 h/d for 21 days in a psychrometric chamber. Rectal temperature and respiratory rates were recorded daily post exposure. Blood samples were collected on every 3rd day for estimation of plasma vitamins C and E, total antioxidant activity and hormones, and separate blood samples were taken to estimate acid-base status. The rectal temperature and respiratory rates were increased (p<0.05) in the heat stress group only. Except for pH and $pO_2$, which were increased significantly (p<0.05) other parameters of acid-base balance such as $pCO_2$, $HCO_3^-$, $TCO_2$, BEb, BEcef, PCV and Hb were significantly decreased (p<0.05) in the heat stress group. An improvement in acid-base status was noted in the antioxidant supplemented groups. Prolactin and cortisol levels were significantly (p<0.05) higher and free T3 and T4 levels were significantly (p<0.05) lower in the heat stress group. Levels of prolactin and cortisol were decreased and free T3 and T4 were increased in antioxidant treatment groups. Different levels of antioxidant supplementation resulted in similar protection against heat stress.

Performance Design of Boiler for Waste Heat Recovery of Engine Coolant by Rankine Steam Cycle (엔진 냉각수 폐열 회수를 위한 랭킨 스팀 사이클용 보일러의 성능 설계)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Hwang, Jae-Soon;Lee, Heon-Kyun;Lee, Dong-Hyuk;Park, Jeong-Sang;Lee, Hong-Yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.58-66
    • /
    • 2011
  • A 2-loop waste heat recovery system with Rankine steam cycles for the improvement of fuel efficiency of gasoline vehicles has been investigated. A high temperature loop(HT loop) is a system to recover the waste heat from the exhaust gas, a low temperature loop(LT loop) is for heat recovery from the engine coolant cold relatively. This paper has dealt with a layout of a LT loop system, the review of the working fluids, and the design of the cycle. The design point and the target heat recovery of the LT boiler, a core part of a LT loop, has been presented and analytically investigated. Considering the characteristics of the cycle, the basic concept of the LT boiler has been determined as a shell-and tube type counterflow heat exchanger, the performance characteristics for various design parameters were investigated.

A STUDY ON FLEXURAL STRENGTH OF COMPOSITE RESIN INLAY ACCORDING TO HEAT TREATMENT (열처리에 따른 복합레진 인레이의 굴곡강도에 관한 연구)

  • Kim, Yong-Seong;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.1
    • /
    • pp.84-94
    • /
    • 1993
  • The purpose of this study was to evaluate flexure strength of composite resin inlay according to heat treatment and duration in comparasion with visible light-cured resin. In this study, materials were used 1 visible light-cured resin and 3 kinds of composite resin inlays. Control group was visible light cured resin (Photo Clearfil Posterior) and experimental groups were composite resin inlays (Brilliant Dentin, Brilliant Enamel and Clearfil CR Inlay). Experimental groups were divided 3 groups: First group was Brilliant Dentin and second group was Brilliant Enamel and -third group was Clearfil CR Inlay. Used experimental groups were calculated flexural strength according to heat treatment and duration. The following results were obtained: 1. Experimental groups were higher flexural strength than control group. 2. At $100^{\circ}C$ when heat treatment carried out 7 minutes flexural strength elevated third group, second group, first group in turn and when heat treatment carried out 15 minutes flexural strength elevated third group, second group, first group in turn but no difference was showed between first and second group. 3. At $125^{\circ}C$ when heat treatment was carried out 7 minutes flexural strength elevated third group, second group, first group in turn and when heat treatment was carried out 15 minutes flexural strength elevated third group, first group, second group in turn but no difference was showed between first and second group. 4. In spite of heat treatment and duration the third group was highest flexural strength in the others groups.

  • PDF

Mechanical Properties Variation of Ti-6Al-4V Alloy by Microstructural Control (α+β 타이타늄 합금의 미세조직 제어에 따른 기계적 특성)

  • Hwang, Yu-Jin;Park, Yang-Kyun;Kim, Chang-Lim;Kim, Jin-Yung;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.5
    • /
    • pp.220-226
    • /
    • 2016
  • The mechanical properties of Ti-6Al-4V can be improved by microstructural control through the heat treatment in ${\alpha}+{\beta}$ region. The heat treatment was carried out with a variety of heat treatment temperatures and holding times to find the optimized heat treatment conditions and it was analyzed by linking the microstructural characteristics and mechanical properties. The part of ${\beta}$ phase with $10{\pm}2wt%$ vanadium was transformed into ${\alpha}^{{\prime}{\prime}}$ martensite phase after quenched, so the hardness and tensile properties were decreased below $900^{\circ}C$. The higher the heat treatment temperature is, the smaller is the vanadium-rich region, which leads to transformation into hcp ${\alpha}^{\prime}$ martensite above $900^{\circ}C$. The hardness and tensile properties were improved due to the hard ${\alpha}^{\prime}$ martensite. As the holding times were longer, the hardness and tensile properties decreased below $900^{\circ}C$ because of the softening effect by the grain growth. When varying the holding times above $900^{\circ}C$, the change of mechanical properties was slight because the softening effect of grain growth and the strengthening effect of ${\alpha}^{\prime}$ phase were counteractive. Therefore, the best conditions of heat treatment, which is in the range of $920{\sim}960^{\circ}C$, 40 min, WQ, can effectively improve the mechanical properties of Ti-6Al-4V.

Temperature Crack Contol in Subway Box Structures (지하철 박스 구조물에서의 온도균열제어)

  • Koo, Bon-Chang;Kim, Dong-Seuk;Ha, Jae-Dam;Kim, Ki-Soo;Choi, Long;Oh, Byung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.293-298
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as underground box structure, mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The objective of this paper is largely two folded. Firstly we introduce the cracks control technique by employing low-heat cement mix and thermal stress analysis. Secondly it show the application condition of the cracks control technique like the subway structure in Seoul.

  • PDF

Temperature Control Improvement of Pressure Heating Roller for Flexible Flat Cable Production (Flexible Flat Cable 생산성 향상을 위한 가압용 히팅롤러의 온도제어개선)

  • Kim Jae Hak;Lee Ho Jung;Chun Keyoung Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.155-163
    • /
    • 2005
  • Pressure heating rollers with temperature control were mounted to a flat cable laminating machine (FCLM). Pressure heating rollers should be heated up to the setting temperature $(175^{\circ}C)$ and kept on to producing good quality flexible flat cables (FFC). Existing Pressure heating rollers took more than 70minutes to the setting temperature and did not keep on the setting temperature in production. Temperature controller, electric power controller, material and diameter of rollers and heat capacities were changed to improve the temperature control of the pressure heat rollers for better production of the FFC. Thus, the reaching time to the setting temperature (RT), temperature stability time (TST) and temperature hunting (TH) were measured and compared with the existing pressure rollers case. The RT of A roller was shortened by 50minutes, and B roller was shortened by 15minutes. The TST of A roller was shortened by 13minutes, and B roller was shortened by 15minutes. The THs of both A and B rollers were settled up to ${\pm}5^{\circ}C$. Finally, the productivity of the FCLM and the quality of the FFC were increased.

Control and Monitor of Heat Exchange Ventilation Facility by Smart Phone (스마트폰을 이용한 열교환기 환기장치의 제어 및 계측)

  • Chung, Myung-jin;Lee, Jin-ho;Hong, Jong-sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1027-1029
    • /
    • 2015
  • Heat exchange ventilation facility is using for heating the inflow outside-air with warm outflow inside-air. Energy cost is saved and respiratory disease caused by temperature difference of air is prevented. In this paper, system for remote control and monitoring of heat exchange ventilation facility is developed. This system is applied in chicken breeding farm, and verification test of performance such as temperature and humidity control and monitoring is conducted. From verification test, temperature control error is measured as under 2degrees around the chicken breeding farm.

  • PDF