• Title/Summary/Keyword: Heat Control

Search Result 3,676, Processing Time 0.032 seconds

A development of a general purposed control system of robot end-effector for inspection and maintenance of steam generator heat pipe (증기발생기전열관의 검사정비로봇용 엔드이펙터의 범용 제어시스템 개발)

  • Park, Ki-Tae;Kim, Seon-Jin;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2013
  • The general purposed control system for driving a motion of many different typed robot end-effector, which consists of a controller based on ARM Cotex M3-11017 MCU and an application software for generating a motion of end-effector, was developed. Experimental results show that a positioning error is nearly negligible and a repeatability error is 0.04%. Accordingly the developed control system can be applied practically to actuate a robot end-effector for inspection and maintenance of steam generator heat pipe in nuclear power plant.

Effective Dynamic Models for the Development of Control Algorithms of a Condensing Gas Boiler System (응축형 가스보일러시스템의 제어 알고리즘 개발을 위한 효과적인 동적모델)

  • Han, Do-Young;Kim, Sung-Hak
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.365-371
    • /
    • 2008
  • Condensing gas boiler units may make a big role for the reduction of energy consumption in heating industries. In order to decrease the energy consumption of a condensing gas boiler unit, effective operations of the system are necessary. In this study, mathematical models of a condensing gas boiler system were developed in order to develop control algorithms of the system. These include dynamic models of a blower, a gas valve, a pump, a burner, a boiler heat exchanger, and a hot water heat exchanger. Control algorithms of a blower, a gas valve, and a pump were also assumed. Simulation results showed good predictions of dynamic behaviors of a boiler system. Therefore, the simulation program developed for this study may be effectively used for the development of control algorithms of a boiler system.

Effects of Dietary Vitamins C and E on Egg Shell Quality of Broiler Breeder Hens Exposed to Heat Stress

  • Chung, M.K.;Choi, J.H.;Chung, Y.K.;Chee, K.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.4
    • /
    • pp.545-551
    • /
    • 2005
  • A feeding trial was conducted to determine whether dietary vitamin C (200 mg/kg) and vitamin E (250 mg/kg) prevent any drops in egg shell quality under heat stress in broiler breeder hens. One hundred and sixty molted Ross broiler breeders were housed randomly in an individual cage at 83 weeks of age. Four dietary treatments with forty hens and four replications per treatment were control (no additional vitamins), vitamin C-, or vitamin E-supplemented and combined supplementation of the two vitamins. After a tenday-adaptation period at 25$^{\circ}C$, the ambient temperature was kept at 32$^{\circ}C$ for a three-week-testing period. Egg production dropped dramatically over week but it did not show a significant change among treatments (p<0.05). However, egg quality parameters such as egg weight, specific gravity, shell thickness, SWUSA, puncture force and shell breaking strength from the birds fed the diet with the combined vitamins C and E were significantly improved over those of the control group during the heat stress period (p<0.05). The hens fed the vitamin C diet improved tibia breaking strength (37.16 kg), statistically higher than the birds fed the control and the vitamin E diets (p<0.05). The hens fed the control diet showed higher serum corticosterone levels, a mean of 5.97 ng/ml, than those of the other treatments (p<0.05). The heat stress resulted in elevated heterophils and decreased lymphocytes in serum, increasing the H/L ratios for all the treatments. However, the increases in H/L ratios were alleviated by feeding the diets containing vitamin C alone or together with vitamin E, although there were no significant differences in the ratio between the two groups (p<0.05). In conclusion, vitamins C (200 mg/kg) and/or E (250 mg/kg) supplemented to the diets for broiler breeder hens could prevent drops in egg shell quality and tibia bone strength under highly stressful environmental temperatures.

Development of Three-Way Proportional Control Valve and Performance Study (3방 비례제어 조절밸브 개발 및 성능 연구)

  • Lee, Jonghwa;Jung, Taeksu;Cho, Chongdu;Kim, Jooyong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.5
    • /
    • pp.218-223
    • /
    • 2014
  • Korea District heating corp. recently give an attention to combine the district heating and supply pipes as a two pipe system that are in the present system separated with room heating and warm water supply pipe, and the two pipe system is commonly applied for heating service in European countries. In the new two pipe system, only one heat source is supplied to a house and partitioned into room heating and warm water supply by household substation. So the effective distribution of supplied heat source in accordance to user intention is very important. This paper presents the development and performance test of three-way proportional control valve for a combined heat source system in district heating. The proposed valve is controlled to partition heat source into two different directions : hot water distributor for space heating and household substation for warm water supply in response to the pressure drops of tap water caused by the user. The performance investigation is shown within 3% of error compared to the theoretical model of the three-way proportional valve and its controllability is verified.

A Study on Development of Brake System of Light Eco-Friendly Car Considering Heat Load and Regenerative Braking Characteristic (열부하 및 회생 제동 특성을 고려한 경형 친환경차의 제동시스템 개발에 관한 연구)

  • Shim, J.H.;Shin, U.H.;Lee, J.H.;Hwang, S.R.;Yim, W.S.;Kim, B.C.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • Recently, there is a big issue of downsizing on brake system according to fuel efficiency and regenerative braking cooperation control. Especially, small cars have improved in a variety ways such as electric vehicle and smart car compared to previous small cars. So, small brake system is strongly required in the car industry. A new small brake system for light compact vehicles was proposed in this paper. For this system, the solid type disc and caliper were newly developed. And the important design factors were considered to reduce brake size. First, we calculated the temperature rise of disc through heat capacity formula and CAE analysis. Second, we analyzed the housing and carrier stiffness of caliper to select the reasonable condition. Finally, the superiorities of the developed brake system were verified by heat capacity, consumption liquid level, braking feeling, judder, wear test and regenerative braking cooperation control analysis. A developed brake system is expected to be useful for brake system of light compact platform.

Development of Heating and Cooling System with New Heat Exchange Cycle for High Efficiency and Peak Power Reduction Using Real time Constant Refrigerant Pressure Control (실시간 일정압력 제어기술을 적용한 냉난방장치의 피크부하 저감과 에너지 효율 향상을 위한 시스템 개발)

  • Choi, Sun-Young;Lee, Young-Kug;Choi, Myeong-Gwang;Choi, Tae-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.53-58
    • /
    • 2015
  • Systemic heating and cooling air conditioning systems are popular in various industrial fields and even home. Recently, the rate of supply of this kind of multi-heat pump has been increased under ESCO financing supporting system. Generally the heat pumping system has a structural simplicity and easy installation benefits. and has good running efficiency under normal designed condition. But under extreme climate condition (over $+30^{\circ}C$, under $-10^{\circ}C$), this system exposes abnormal power consumption. It causes high progressive electric power rates and resultant peak power capacity of power plant. In this paper, a novel system concept of buffering refrigerant accumulator and constant pressure control system to relieve peak power load is proposed and this system's utility is verified with an prototype experimental system.

A Study on the Optimal Control Strategy of Air-Conditioning System with Slab Thermal Storage - Results Influenced by the Choice of a Criterion Function - (슬래브축열의 최적제어방책에 관한 연구 -평가함수의 선택이 결과에 미치는 영향-)

  • Jung, Jae-Hoon;Shin, Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.896-905
    • /
    • 2006
  • An optimal control of an air-conditioning system with slab thermal storage is investigated by making use of the Maximum Principle. An optimal heat input to a plenum chamber and an air-conditioned room is determined by minimizing a criterion function which is given as integral sum of two terms. The first term is the square of the deviation in the room air temperature from the set-point value, and the second is the absolute value of the heat input. The result indicates that it tries to keep a room air temperature in set-point value by heating as much as possible at the time of a setup of a room air temperature or just before that, in order to avoid a heat loss arising at the time of the non-air conditioning. The result is compared with that of the case when the square of the heat input is used as a criterion.

A Study on the Operating Control of a 2-Stage Heat Pump System with Screw Compressors (스크류 2단 압축 열펌프 시스템의 운전 제어 방안에 관한 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Lee, Young-Soo;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.501-505
    • /
    • 2006
  • A preliminary performance test of a 30RT 2-stage screw heat pump was carried out in order to develop a high performance large-scale unutilized energy source heat pump, which will be used in district heating and cooling. Two issues on the system control were investigated in this study, A stable 2-stage heating operation is guaranteed only if the load-side water inlet temperature is over a certain value, to where the 1-stage heating operation should be done first from a cold start. An oil shortage problem in low stage compressor, which depends on the degree of suction superheat, was solved by the proper oil level control scheme.

  • PDF

Analysis of Laser Heat Distribution in Al-Cu Welding (알루미늄 구리 용접에서 레이저 열원 분포 분석)

  • Choi, Hae Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • A computer simulation was performed to study the effectiveness of temperature on the type of laser heat source in the context of the heterogeneous welding of aluminum and copper materials. Three different types of heat sources were used in the computer simulation: 1) Single Beam Straight Scan, 2) Single Beam Wobble Scan, and 3) Dual Beam Straight Scan. Among these sources, dual beam straight scan was found to be the most effective from the viewpoint of heat source control. Because the difference between the melting temperatures of copper and aluminum is approximately 400℃, a clear separation of heating temperature was required, and the dual beam straight scan provided superior controllability in this regard. When using the dual beam, the temperature of the 90:10 split was considerably easier to control than that of the 50:50 split. The optimal offset was calculated to be 4 mm off to the copper side, where the melting temperature and thermal conductivity were higher. In this manner, computer simulation was effectively used for determining the optimal laser beam hear source control without performing an actual laser welding experiment.

An Experimental Study on Cooling of Hydration Heat of Mass Concrete Structure using Pulsating Heat Pipe in Summer Season (진동형 히트 파이프를 이용한 하계 매스 콘크리트의 수화열 냉각에 관한 실험적 고찰)

  • Yang, Tae-Jin;Kim, Jeong-Hoon;Kim, Jong-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2007
  • In process of reinforced concrete (RC) box structure. the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete. this paper reports results of hydration heat control in mass concrete structure using the pulsating heat pipe. There were three RC box molds($1.2{\times}l.8{\times}2.4m^3$) which shows a difference as compared with each other. One was not equipped with pulsating heat pipe. The others were equipped with pulsating heat pipe. All of them were cooled with natural air convection. The pulsating heat pipe was composed of serpentine type copper pipe with 10 turns (outer diameter: 4mm. inner diameter: 2.8mm). The working fluid was R-22 and its charging ratio was 40% by volume. The conditions such as the number of turns. the length and the pitch of the pulsating heat pipe and the size of concrete structure were changed. Based on these experiments, it was confirmed that this construction method using pulsating heat pipe was effective to remove hydration heat of mass concrete structure and thus it was possible to prevent harmful thermal crack and construction Period and costs of concrete structure would be cut down.