• Title/Summary/Keyword: Heat Conduction Equation

Search Result 192, Processing Time 0.021 seconds

A Study on the Characteristics of Thermal Flow in a Turbocharged Gasoline Engine (터보과급 가솔린기관의 열유동 특성에 관한 연구)

  • 한성빈;이내현;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3046-3056
    • /
    • 1994
  • To design and develop a turbocharged engine, it needs that many studies must be preceded about the characteristics of engine performance and thermal flow. To accomplish this purpose, turbocharger was equipped to 1.3 liter naturally aspirated gasoline engine. The temperature probe of plate type was designed and it was installed into the combustion chamber wall to measure unsteady temperature. The unsteady heat flux at combustion chamber wall was evaluated using one dimensional unsteady conduction equation with the wall temperature and temperature gradient.

PREDICTION OF MICROSTRUCTURE EVOLUTION AND HARDNESS DISTRIBUTION IN THE WELD REPAIR OF CARBON STEEL PIPELINE

  • Li, Victor;Kim, Dong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.205-210
    • /
    • 2002
  • This article presents an integrated modeling approach for coupled analysis of heat transfer and microstructure evolution in welding carbon steel. The modeling procedure utilizes commercial [mite element code ABAQUS/Standard as the platform for solving the equation of heat conduction. User subroutines that implement computational thermodynamics and kinetics models are integrated with the FEA code to compute the transient microstructure evolution. In this study, the integrated models are applied to simulate the hot-tap repair welding of carbon steel pipeline. Microstructural components are treated as user output variables. Based on the predicted microstructure and cooling rates, hardness distributions in the welds were also predicted. The predicted microstructure and hardness distribution were found in good agreement with metallographic examinations and hardness measurements. This study demonstrates the applicability of computational models for the development of welding procedure for in-service pipeline repair.

  • PDF

An Investigation on Local Thermodynamic Equilibrium Assumption of Natural Convection in a Porous Medium (다공성 물질 안에서의 자연대류 현상에 대한 열역학적 국소평형상태 가정의 고찰)

  • Kim, In-Seon;Nam, Jin-Hyun;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.112-117
    • /
    • 2000
  • A numerical study on natural convection in a vertical square cavity filled with a porous medium is carried out with Brinkman-Forchheimer-extended Darcy flow model, and the validity of local thermodynamic equilibrium assumption is studied. The local thermodynamic equilibrium refers to the state in which a single temperature can be used to describe a heat transfer process in a multiphase system. With this assumption, the analysis is greatly simplified because only one equation is needed to describe the heat transfer process. But prior to using this assumption, it is necessary to know in what conditions the assumption can be used. The numerical results of this study reveal that large temperature difference between fluid phase and solid phase exists near wall region, paticularily when the convection becomes dominant over conduction. And the influence of flow parameters such as fluid Rayleigh number, fluid Prandtl number, dimensionless particle diameter and conductivity ratio are investigated.

  • PDF

Simulation of Quench in Pancake-shaped Superconducting Magnet Using a Quasi-three-dimensional Model

  • Wang, Qiuliang;Yoon, Cheon-Seog;Kim, Kee-Man
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.125-134
    • /
    • 2000
  • A quench phenomenon is caused by an external disturbance in a superconducting magnet, where the magnet is operating in a cryogenic environment. The heat coupling between the layers and pancakes of the magnet can induce the normal zone propagation with fast speed. In order to analyze quench behavior in a pancake-shaped superconducting magnet, a quasi-three-dimensional model is proposed. A moving mesh finite volume method is employed in solving the heat conduction equation. The quench process of the superconducting magnet is studied under the various operating conditions and cooling conditions.

  • PDF

Effects of Radiation on Conjugate Natural Convection from a Vertical Plate Fin (수직 평판휜으로부터의 복합자연대류에 미치는 복사효과)

  • 김경훈;김세웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.382-390
    • /
    • 1992
  • The problem of natural convection from a vertical fin is solved by coupling the thermal diffusion equation in the fin to the constitutive equations of the ambient medium involving the radiation of the medium. The analysis is accomplished by employing an integral method. The governing equations for the problem are solved by shooting method based on the Runge-Kutta Scheme at Pr= 0.7. For the range of values of the fin parameter and the radiation-conduction parameter in the analysis, the numerical results show that the radiation effects play an important role in the heat transfer and enhance the heat transfer.

Prediction of Microstructure Evolution and Hardness Distribution in the Weld Repair of Carbon Steel Pipeline

  • Li, V.;Kim, D.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.1-6
    • /
    • 2002
  • This article presents an integrated modeling approach for coupled analysis of heat transfer and microstructure evolution in welding carbon steel. The modeling procedure utilizes commercial finite element code ABAQUS/Standard as the platform for solving the equation of heat conduction. User subroutines that Implement computational thermodynamics and kinetics models are integrated with the FEA code to compute the transient microstructure evolution. In this study, the integrated models are applied to simulate the hot-tap repair welding of carbon steel pipeline. Microstructural components are treated as user output variables. Based on the predicted microstructure and cooling rates, hardness distributions in the welds were also predicted. The predicted microstructure and hardness distribution were found in good agreement with metallographic examinations and hardness measurements. This study demonstrates the applicability of computational models for the development of welding procedure for in-service pipeline repair.

  • PDF

An Investigation on the Thermal Characteristics of Heat-Responsive Element of Sprinkler Head (스프링클러헤드 감열부의 열적 특성에 관한 연구)

  • You, Woo-Jun;Moon, Hyo-Jun;Youm, Moon-Cheon;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.79-84
    • /
    • 2012
  • In this study thermal characteristics of heat-responsive element considering conduction, convection and rate of change of element using Response Time Index (RTI) applied to sensitivity test of sprinkler head at home and aborad are theoretically investigated. Analytic solution of temperature distributions with radial direction and time is obtained form energy transport equations, non-homogeneous 2th order partial differential equation, applying to constant wall temperature and symmetric condition in order to analyze thermal characteristics of heat-responsive element for circular cylindrical geometry. Base on the results, the analytic method of this study is fundamental data to practical use for sensitivity test of sprinkler head and design of heat-responsive element.

Inhibitory Effect of adding Phase Change Material (PCM) to Fire Fighter Protective Clothing on Burn Injuries (Phase Change Material (PCM) 소재 적용 소방보호복의 화상발생 억제효과에 관한 연구)

  • Lee, Jun Kyoung
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.16-22
    • /
    • 2016
  • Fire fighters rely on fire fighter protective clothing (FFPC) to provide adequate protection in the various hazardous environments. To enhance its protection performance, the FFPC material must be thick and thus it is difficult to achieve weight reduction. One of the methods of overcoming this problem, the addition of phase change material (PCM) to FFPC, is a new technology. In previous studies, the researches was mostly related to the temperature characteristics of the fibers incorporating PCM, but little information is available about its effect on burn injuries. Thus, in this study, the inhibitory effects of adding PCM to FFPC on second degree burns were investigated through numerical calculations. Thermal analyses of biological tissues and FFPC with embedded PCM exposed to several fire conditions causing severe tissue damage were studied by using a finite difference method based on the Pennes bio-heat equation. FFPC with embedded PCM was found to provide significantly greater protection than conventional fire fighting clothing, because the heat of absorption due to the phase change within the material is used to limit the heat conduction of the material.

Analysis of Natural Convection Heat Transfer from Electronic Modules in a Plasma Display Panel (플라즈마 영상장치의 채널 사이에 놓인 전자모듈의 자연대류 열전달 해석)

  • Choi, In-Su;Park, Byung-Duck;Seo, Joo-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • The heat transfer characteristics of a plasma display panel has been investigated for cooling an electronic module. Hence, a two dimensional $\kappa-{\varepsilon}$ turbulent model was developed to predict the temperatures of the panel and module. The heat conduction was solve for the material region. To consider the mixed convection at the solid-fluid interfaces between the air and the panel and module, the energy equation was solved simultaneously. When the electronic module stands face to face with the panel, the temperatures of panel and module are lower than other arrangement due to the chimney effect. However the gap between the panel and module does not affect significantly the maximum temperature when the aspect ratio is less than 0.1. To maintain the maximum temperature of the module under a certain limit, the passage of air should be well designed by the optimal layout of electronic modules which have different heat emission.

  • PDF

Analysis of Thermal Behavior and Temperature Estimation by using an Observer in Drilling Processes (드릴링 공정의 열거동 해석과 관측기를 이용한 온도 추정법)

  • Kim, Tae-Hoon;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1499-1507
    • /
    • 2003
  • Physical importance of cutting temperatures has long been recognized. Cutting temperatures have strongly influenced both the tool life and the metallurgical state of machined surfaces. Temperatures in drilling processes are particularly important, because chips remain in contact with the tool for a relatively long time in a hole. Tool temperatures tend to be higher in drilling processes than in other in machining processes. This paper concerns with modeling of thermal behaviors in drilling processes as well as estimation of the cutting temperature distribution based on remote temperature measurements. One- and two-dimensional estimation problems are proposed to analyze drilling temperatures. The proposed thermal models are compared with solutions of finite element methods. Observer algorithms are developed to solve inverse heat conduction problems. In order to apply the estimation of cutting temperatures, approximation methods are proposed by using the solution of the finite element method. In two-dimensional analysis, a moving heat source according to feedrate of the drilling process is regarded as a fixed heat source with respect to the drilling location. Simulation results confirm the application of the proposed methods.