• Title/Summary/Keyword: Heat Capacity

Search Result 1,955, Processing Time 0.023 seconds

Effect of Coagulation Heat Capacity on the PVDF Membrane via TIPS Method (열유도상분리법을 이용한 응고조의 열용량에 따른 PVDF 분리막의 구조 분석)

  • Lee, Jeong Woo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • In this study, we used TIPS (thermally induced phase separation) for the application of water treatment membrane, and observed the change in morphology of separation membrane due to the change of solidification temperature and heat capacity. For manufactured membrane, PVDF and silica with excellent mechanical properties and chemical resistance were used, and DOP (dioctyl phthalate), DBP (dibutyl phthalate) were used as the diluent. Using the SEM (scanning electron microscope), the morphology of each different coagulation solutions of heat capacity change was observed. As the heat capacity increased, the crystallization rate of PVDF was decreased and showed large pore. In contrast, It also confirmed that the smaller heat capacity, the faster the crystallization rate and make smaller pores.

The Change of Degree of Cure and Specific Heat Capacity According to Temperature of Thermoset Resin (열경화성 수지의 온도에 따른 경화도와 비열(Cp) 변화)

  • Shin, Dong-Woo;Hwang, Seong-Soon;Lee, Ho-Sung;Kim, Jin-Won;Choi, Won-Jong
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.99-103
    • /
    • 2015
  • This paper presents the cure kinetics studies on the cure reaction of thermosetting resin. Above all, change in degree of cure and specific heat capacity according to temperature are observed using DSC and MDSC. The results are analyzed by cure kinetics and specific heat capacity model. Glass transition temperature was also measured to apply to the specific heat capacity model. Model parameters were gained from the modeling result. As a result, behavior of specific heat capacity can be calculated mathematically.

Study on Utilizing Resources in Ecopolis -Evaluation of the Potential Heat Capacity of Sewage For Utilizing as Sewage Energy- (생태도시에서의 자원활용에 관한 연구 -하수 에너지 활용을 위한 보유열량 평가-)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.583-591
    • /
    • 2003
  • The research on potential energy was conducted to conserve the high-exergy energy like primary energy and utilize waste heat from sewage. From the Point of view in using the waste heat, the energy Potential of waste water from the model house was simulated. From the results, when the heated water was supplied to the model house side in order to put unused energy to Practice use, heated water had higher energy Potential than unheated water, which was due to the discharge of most of unused energy. The possessing heat capacity of sewage from heated water was increased to 40-70 percents in comparison with that from the unheated water. Therefore, it can be used as energy source for improving coefficient of performance of heat pumps. By adopting the multiple heat pump into a model house, It showed that the possessing heat capacity of sewage was reduced. It was also found that the heat was recovered as energy source fur multiple heat pump in a model house.

Characteristics of Heat Generation during Transormation in Carbon Steels (일반탄소강의 상변태 중 발열 특성 해석)

  • 한흥남
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.196-201
    • /
    • 2000
  • A thermodynamic model was developed to analyze the characteristics of the heat generation during transformation of austenite in 0.186wt% and 0.458 wt%. carbon steels. The heat capacity and the heat evolved during transformation were formulated as functions of temperature and chemical composition for ferrite bainite and pearlite. in addition using the transformation dilatometer the transformation heat evolved during cooling was measured and the transformation behavior was observed. It was found that the heat capacity of ferrite was similar to those of pearlite and bainite. The heat capacity of ferrite was greater than that of bainite which was greater than that of pearlite. The molar heat of transformation to pearlite was greater than that to bainite which was greater than that to ferrite. The heats were found to be increased with decreased temperature and increasing the carbon content, It was also observed that the thermodynamic model. The heat of transformation in the higher carbon steel was greater than that in the lower carbon one. This was attributed to the lower transformation temperature and the greater amount of transformed pearlite in the higher carbon steel.

  • PDF

Development of a Three-Dimensional Numerical Model of the Vertical Ground-Coupled Heat Exchanger Considering the Effects of the Thermal Capacity (내부 열용량을 고려한 수직 지중열교환기의 3차원 수치 모델 개발)

  • Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.7
    • /
    • pp.293-298
    • /
    • 2016
  • A three-dimensional (3D) numerical model of the vertical ground-coupled heat exchanger is useful for analyzing the modern ground source heat pump system. Furthermore, a detailed description of the inner side of the exchanger allows to account for the effects of the thermal capacity. Thus, both methods are included in the proposed numerical model. For the ground portion, a FDM (Finite Difference Method) scheme has been applied using the Cartesian coordinate system. Cylindrical grids are applied for the borehole portion, and the U-tube configuration is adjusted at the grid, keeping the area and distance unchanged. Two sub-models are numerically coupled at each time-step using an iterative method for convergence. The model is validated by a reference 3D model under a continuous heat injection case. The results from a periodic heat injection input show that the proposed thermal capacity model reacts more slowly to the changes, resulting in lower borehole wall temperatures, when compared with a thermal resistance model. This implies that thermal capacity effects may be important factors for system controls.

Capacity Modulation of a Heat Pump System by Changing the Composition of Refrigerant Mixtures (혼합냉매의 성분비 조절을 통한 열펌프의 용량조절)

  • 김민성;김민수;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.258-266
    • /
    • 2000
  • Experimental investigation and cycle simulation of a capacity modulation of a heat pump system using a hydrofluorocarbon (HFC) refrigerant mixture, R32/134a as an alternative to R22, have been done. In the cycle simulation, the refrigeration system was operated by assigning the temperatures of the external heat transfer fluids with the heat exchangers generalized by an average effective temperature difference. Heating capacity, cooling capacity, and coefficient of performance (COP) of the system were investigated at several operating conditions. Experimental apparatus which had a refrigeration part and a composition changing part was built, and the performance of the heat pump system filled with R32/134a mixture was investigated. A gas-liquid separator was used in the experiment to change the composition by collecting the vapor and the liquid Phase separately, The mass fraction of the charged refrigerant in the heat pump system was 40/60 and 70/30 by weight percentage. The composition of the refrigerant with initial composition of 40/60 varied from 29/71 to 41/59 in the refrigeration cycle. For the refrigerant with initial composition of 70/30, the composition varied from 65/35 to 75/25.

  • PDF

The maximum power condition of the Brayton cycle with heat exchange processes (熱交換 過程 을 考慮한 브레이튼 사이클 의 最大出力條件)

  • 정평석;차진걸;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.795-800
    • /
    • 1985
  • The ideal Brayton cycle has been analyzed with the heat exchange processes between the working fluid and the heat source and the sink while their heat capacity rates are constant. The power fo the cycle can be expressed in terms of a temperature of the cycle and the heat capacity rate of the working fluid. There exists an optimum power condition where the heat capacity rate of the working fluid has a value between those of the heat source and the heat sink, and the cycle efficiency is determined by the inlet temperatures of the heat source and the sink.

Comparision of Heat Exchanging Performance Depending on Different Arrangement of Heat Exchanging Pipe (II) (열회수장치의 열교환 파이프배치형식별 열교환 성능 비교(II))

  • Suh, Won-Myung;Kang, Jong-Guk;Yoon, Yong-Cheol;Kim, Jung-Sub
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared for the comparison of heat recovery performance; AB-type(control unit) is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types(C-type and D-type) modified from the control unit are different in the aspects of airflow direction(U-turn airflow) and pipe arrangement. The results are summarized as follows; 1. In the case of Type-AB, when considering the initial cost and current electricity fee required for system operation, it is expected that one or two years at most would be enough to return the whole cost invested. 2. Type-C and Type-D, basically different with Type-AB in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than $25\;m^{3}/min$. Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This is assumed to be that air flow resistance in high air capacity reduces the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate in Type-C and Type-D were improved by about 5% and 13%, respectively. 3. Desirable blower capacity for these heat recovery units experimented are expected to be about $25\;m^{3}/min$, and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it is recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., are required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

  • PDF

Load capacity simulation of an agricultural gear reducer by surface heat treatment

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Joo, Jai-Hwang;Rhee, Joong-Yong;Choi, Young-Soo;Ha, Jong-Woo;Park, Young-Jun;Hong, Sun-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.656-664
    • /
    • 2016
  • Gear reducers are widely used for various agricultural machinery applications such as greenhouses, tractors, and agricultural vehicles. However, thermal deformation and surface pitting at gear tooth flank frequently occur in gear reducers due to high torque. Thus, surface heat treatment of gears is required to improve wear and fatigue resistance. The objective of this study was to simulate the load capacity of the agricultural gear reducer. The simulation was performed for the following three surface heat treatment methods: untreated gears, nitriding heat treatment, and induction hardening method, those mostly used for agricultural gear reducers. The load capacity of the gear reducer was simulated using the safety factor, limit bending stress, and limit contact stress of the gear. The simulation of the load capacity was conducted using KISSsoft commercial software for gear analysis. The main results of simulation test were as follows: first, the nitriding heat treatment resulted in the highest safety factor for bending stress, which was increased about 77% from those of the untreated gears. Second, the induction hardening was the highest safety factor for contact stress, which was increased about 150% from those of the untreated gears. The safety factor for contact stress of the induction hardening was increased about 64% from those of the nitriding heat treatment. The study result suggested that the surface heat treatments could enhance load capacity and that the method of surface heat treatment should be determined based on simulation results for appropriate use scenarios.

A Study on Transport and Heat Utilization of Ice Slurries (아이스 슬러리의 수송 및 냉열이용에 관한 연구)

  • 길복임;이윤표;정동주;조봉현;최은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1065-1071
    • /
    • 2001
  • To investigate hydraulic and thermal characteristics of ice slurries in a circular tube, ice slurries were tested in a flow loop with a constant heat flux test section, for ranges of flow velocity, ice fraction and heat flux. Heat transfer coefficients and friction factors of ice slurries were calculated by measuring the outer wall temperatures of the test section and the pressure drops over the test section. Heat transfer coefficients of ice slurries were 9% higher than the heat transfer coefficients expected by Petukhov. Friction factors were about 4% lower than the friction factors expected by Petukhov. The effective thermal capacity of ice slurry with 12.8% ice fraction, was found to be about 3 times higher than the thermal capacity of water.

  • PDF