DOI QR코드

DOI QR Code

Effect of Coagulation Heat Capacity on the PVDF Membrane via TIPS Method

열유도상분리법을 이용한 응고조의 열용량에 따른 PVDF 분리막의 구조 분석

  • Lee, Jeong Woo (Department of materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 이정우 (경상대학교 나노신소재융합공학과) ;
  • 남상용 (경상대학교 나노신소재융합공학과)
  • Received : 2017.08.23
  • Accepted : 2017.08.30
  • Published : 2017.08.31

Abstract

In this study, we used TIPS (thermally induced phase separation) for the application of water treatment membrane, and observed the change in morphology of separation membrane due to the change of solidification temperature and heat capacity. For manufactured membrane, PVDF and silica with excellent mechanical properties and chemical resistance were used, and DOP (dioctyl phthalate), DBP (dibutyl phthalate) were used as the diluent. Using the SEM (scanning electron microscope), the morphology of each different coagulation solutions of heat capacity change was observed. As the heat capacity increased, the crystallization rate of PVDF was decreased and showed large pore. In contrast, It also confirmed that the smaller heat capacity, the faster the crystallization rate and make smaller pores.

본 연구는 열유도 상분리법(thermally induced phase separation, TIPS)을 사용하여, 수처리 분리막에 적용하기 위해, 응고조의 온도 및 열용량의 변화에 따른 분리막의 모폴로지 변화를 관찰하였다. 분리막을 제조하기 위한 소재로는 기계적 물성과 내화학성이 우수한 poly(vinylidene fluoride)(PVDF)와 실리카를 이용하였고, 희석제로는 dioctyl phthalate (DOP), dibutyl phthalate (DBP)를 사용하였다. 다양한 응고액의 열용량 변화에 따른 구조 변화 관찰을 위하여 SEM 이미지를 관찰하였다. 열용량이 증가할수록 PVDF의 결정화 속도가 느려져 큰 기공을 나타내며 열용량이 작을수록 결정화 속도가 증가하여 작은 기공이 생기는 것을 확인하였다.

Keywords

References

  1. S. K. Kang, K. H. Kim, H. S. Lee, and D. S. Bae, "R&D Trend and Information Analysis of Ceramic Membrane for Water Treatment", KIC News., 7, 83 (2004).
  2. I. S. Kim and B. S. Oh, "Technologies of seawater desalination and wastewater reuse for soving water shortage", J. Korean Soc. Environ. Eng., 30, 1197 (2008)
  3. M. M. Pendergast and E. M. Hoek, "A review of water treatment membrane nanotechnologies", Energy Environ. Sci., 4, 1946 (2011). https://doi.org/10.1039/c0ee00541j
  4. B. J. Cha, S. D. Chi, and J. H. Kim, "Membrane market for water treatment", KIC News., 14, 2 (2011).
  5. S. J. Kim, S. M. Woo, H. Y. Hwang, H. C. Koh, S. Y. Ha, H. S. Choi, and S. Y. Nam, "Preparation and properties of chlorin-resistance loose reverse osmosis hollow-fiber membrane", Membr. J., 20, 304 (2010).
  6. J. B. Ryu, K. Song, and S. S. Kim, "Preparation of chemical and fouling resistant semicrystalline membranes", Polym. Korea, 24, 342 (2000).
  7. K. M. Kyung and J. Y. Park, "Effect of pH hybrid water treatment process of PVdF nanofibers spiral wound microfiltration and granular activated carbon", Membr. J., 25, 358 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.358
  8. Y. H. Park and S. Y. Nam, "Characterization of water treatment membrane using various hydrophilic coating materials", Membr. J., 27, 60 (2014).
  9. G. H. Lee, J. Kim, K. Song, and S. S. Kim, "Structure variation of Polypropylene hollow Fiber Membrane with Operation Parameters in Stretching Process", Polym. Korea, 30, 175 (2006).
  10. S. M. Lee and S. S. Kim, "Structural changes of PVDF membranes by phase separation control", Korean Chem. Eng. Res., 54, 57 (2016). https://doi.org/10.9713/kcer.2016.54.1.57
  11. G. R. Guillen, Y. Pan, M. Li, and E. M. Hoek, "Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review", Ind. Eng. Chem. Res., 50, 3798 (2011). https://doi.org/10.1021/ie101928r
  12. G. D. Kang and Y. M. Cao, "Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review", J. Membr. Sci., 463, 145 (2014). https://doi.org/10.1016/j.memsci.2014.03.055
  13. H. C. Koh, S. Y. Ha, S. M. Woo, S. Y. Nam, B. S. Lee, C. S. Lee, and W. M. Choi, "Separation and purification of biogas by hollow fiber gas separation membrane module", Membr. J., 21, 177 (2011).
  14. K. M. Kyung and J. Y. Park, "Effect of operating conditions and recovery of water back-washing in spiral wound microfiltration module manufactured with PVDF nanofibers for water treatment", Membr. J., 25, 180 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.180
  15. D. J. Kim, H. Y. Hwang, S. J. Kim, Y. T. Hong, H. J. Kim, T. H. Leem, and S. Y. Nam, "Characterization of SPAES composite membrane containing variously funtionallized MMT for direct methanol fuel cell application", Trans. of the Korean Hydrogen and New Energy Society, 22, 42 (2011).
  16. S. G. Hong, S. H. Lee, J. H. Kim, J. H. Kim, and Y. G. Ju, "Evolution of RO process for green future", KIC News., 14, 9 (2011).
  17. M. S. Park, J. H. Kim, M. S. Jang, and S. S. Kim, "Preparaion of PVDF hollow fiber membrane via TIPS (thermally induced phase separation) and stretching", Membr. J., 24, 158 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.158
  18. S. M. Woo, Y. S. Chung, and S. Y. Nam, "Evaluation of morphology and water flux for polysulfone flat sheet membrane with conditions of coagulation bath and dope solution", Membr. J., 22, 258 (2012).
  19. G. Ji, L. Zhu, B. Zhu, C. Zhang, and Y. Xu, "Structure formation and characterization of PVDF hollow fiber membrane prepared via TIPS with diluent mixture", J. Membr. Sci., 319, 264 (2008). https://doi.org/10.1016/j.memsci.2008.03.043
  20. S. H. Lee, H. J. Kim, and S. M. Park, "Development of functional microsphere (I) - Formation and characteristics of poly(ethylene-covinyl acetate) microspheres via thermally induced phase separation-", J. of the Korean Soc. of Dyers and Finishers, 15, 57 (2003).
  21. T. Ogoshi and Y. Chujo, "Synthesis of poly (vinylidene fluoride)(PVdF)/silica hybrids having interpenetrating polymer network structure by using crystallization between PVdF chains", J. Polym. Sci. Pol. Chem., 43, 3543 (2005). https://doi.org/10.1002/pola.20833
  22. N. T. Hassankiadeh, Z. Cui, J. H. Kim, D. W. Shin, A. Sanguineti, V. Arcella, Y. M. Lee, and E. Drioli, "PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: effect of PVDF molecular weight", J. Membr. Sci., 471, 237 (2014). https://doi.org/10.1016/j.memsci.2014.07.060
  23. S. J. Kim, J. W. Lee, and S. Y. NAN, "Study of thermally induced phase separation of polyvinylidene fluoride-silica mixture for the preparation of porous polymeric membrane", Membr. J., 27, 189 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.189
  24. O. V. Fefelov, J. Bergli, and Y. M. Galperin, "Calculation of the heat capacity of a thin membrane at very low temperature", Phys. Rev. B., 75, 172101 (2007). https://doi.org/10.1103/PhysRevB.75.172101
  25. H. Ftouni, D. Tainoff, J. Richard, K. Lulla, J. Guidi, E. Collin, and O. Bourgeois, "Specific heat measurement of thin suspended SiN membrane from 8 K to 300 K using the 3${\omega}$-Volklein method", Rev. Sci. Instrum., 84, 094902 (2013). https://doi.org/10.1063/1.4821501
  26. S. S. Kim, I. S. Cho, D. R. Lloyd, and A. Laxminarayan, "Parameters affecting the thermally- induced phase separation mechanism", Theories and Applications of Chem. Eng., 1, 1023 (1995).
  27. I. Y. Jung, M. N. Han, and M. H. Cha, "Phase separation of thermally induced phase separation membrane and minute structure control with phase separation", Theories and Applications of Chem. Eng., 9, 1994 (2003).
  28. D. J. Im and S. S. Kim, "Investigation of phase separation behavior for PVDF membrane formation", Polym. Korea., 39, 697 (2015). https://doi.org/10.7317/pk.2015.39.5.697
  29. M. O. Yeom, K. G. Song, and S. S. Kim, "Thermally-induced phase separation mechanism study for semicrystalline polymeric membrane formation", Polym. Korea, 23, 320 (1999).