• 제목/요약/키워드: Heat Balance Equation

검색결과 102건 처리시간 0.027초

좁은 공간 내의 밀폐형 장치 냉각시스템에 대한 열평형 평가 (Evaluation of Heat Balance for Cooling System of an Armored Installation in Small Space)

  • 김성광;안석환;남기우
    • 한국해양공학회지
    • /
    • 제21권3호
    • /
    • pp.1-7
    • /
    • 2007
  • In this study, the heat balance test of an engine was conducted, and the heat released to coolant is measured and corrected using a power adjustment factor for high fuel temperature to simulate heat rejection of the engine. An engine-converter matching simulation program which can compute the engine speed, transmission output speed, transmission input and output power is developed from the vehicle, transmission and engine performance curve. With this information and the engine heat rejection characteristics, the engine and transmission heat rejection rates can be determined at given condition. In analyzing the air mass flow, a sub program computing the air mass flow rate from the equation of the pressure balance between cooling fan static pressure rise and pressure losses of cooling components is developed.

조명기구를 통한 내부획득열 추정을 위한 고단열실 및 조명기구의 열적 모델링 (Thermal Modeling of Quasi-Adiabatic Room and Lighting Fixture for Estimation of Internal Heat Gain by Luminaires)

  • 박혜리;최은혁;이광식
    • 조명전기설비학회논문지
    • /
    • 제26권5호
    • /
    • pp.1-12
    • /
    • 2012
  • In order to reduce energy consumption and greenhouse gas emission in building domain, thermal insulation of building is being enhanced. In a well insulated and tightened environment, internal heat gain caused by solar radiation, luminaires, electronic appliances and metabolism can be more important to thermal condition of building. This paper presents mathematical/physical models of quasi-adiabtic room and lighting fixtures using heat balance equation and thermal-electric analogy to quantify and modelize the heat gain due to luminaires. Experimental results are used to identify thermal parameters of theoretical models. And simulation results of models using Matlab/Simulink are conducted to verify the models and to investigate the thermal effect of lighting fixtures into quasi-adiabatic room.

가공송전선로의 허용전류 계산 규격의 검토 (The Standard Comparison of Calculating the Permissible Current Carrying Capability for Overhead Transmission Line)

  • 정성환;남기영;이재덕;최상봉;류희석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.274-275
    • /
    • 2006
  • The IEEE std 738 and Cigre Electra documents are well known as the standard of calculating the ampacity of overhead conductors. Although these two standards use the same basic heat balance concept, they use different applicable methods to calculate ampacity ratings. This paper examines the concept of basic heat balance equation and the differences of each term of basic heat balance equation.

  • PDF

Estimation of Expected Temperature Using Heat Balance Model and Observation Data

  • Kim, Eun-Byul;Park, Jong-Kil;Jung, Woo-Sik
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권3호
    • /
    • pp.214-221
    • /
    • 2015
  • This study considers mean skin temperature to calculate expected temperature using the new heat balance model because the skin temperature is the most important element affecting the heat balance outdoors. For this, we measured the skin temperature in high temperature condition of Korea and applied it to calculate the expected temperature. The calculated expected temperature is compared with the result calculated using previous models which use the estimated mean skin temperature by considering metabolic rate only. Results show that the expected temperatures are higher when measured mean skin temperature is applied to the model, compared to the expected temperature calculated by applying mean skin temperature data calculated using metabolic rate like previous models. The observed mean skin temperature was more suitable for outside conditions and expected temperature is underestimated when mean skin temperature calculated by the equation using metabolic rate is used. The model proposed in this study has a few limitations yet, but it can be applied in various ways to facilitate practical responses to extreme heat.

화력발전소 보일러 연료소비량 계산 및 정확성 검증 (Fuel Consumption Rate Calculation Equation and its Application at fewer Boiler)

  • 장석원;김재훈
    • 에너지공학
    • /
    • 제14권2호
    • /
    • pp.147-152
    • /
    • 2005
  • 본 논문에서는 화력발전소 보일러 연료소비량을 측정에 의하지 않고 계산으로 구하는 방법을 세부 항목 별로 유도하고 그 결과를 검증하였다. 보일러 경계를 출입하는 Energy in Energy out의 정량적 관계를 분석하여 Energy in에 해당하는 투입열량과 Energy out에 해당하는 흡수열량 및 손실열량으로부터 에너지 출입의 유기적인 관계식을 수립하여 연료소비량 계산식을 유도, 정립하고 실제 운전중인 석탄 및 중 유연소 발전소에 적응하여 계산식의 정확성을 검증하였다.

$C_2H_4$/Air 비예혼합 난류화염의 매연생성 모델링 (Numerical Modeling of Soot Formation in $C_2H_4$/Air Turbulent Non-premixed Flames)

  • 김태훈;우민호;김용모
    • 한국연소학회지
    • /
    • 제15권4호
    • /
    • pp.22-28
    • /
    • 2010
  • The Direct Quadrature Method of Moments (DQMOM) has been presented for the solution of population balance equation in the wide range of the multi-phase flows. This method has the inherently interesting features which can be easily applied to the multi-inner variable equation. In addition, DQMOM is capable of easily coupling the gas phase with the discrete phases while it requires the relatively low computational cost. Soot inception, subsequent aggregation, surface growth and oxidation are described through a population balance model solved with the DQMOM for soot formation. This approach is also able to represent the evolution of the soot particle size distribution. The turbulence-chemistry interaction is represented by the laminar flamelet model together with the presumed PDF approach and the spherical harmonic P-1 approximation is adopted to account for the radiative heat transfer.

압축기 계가 결합된 응축기의 동특성 (Dynamic characteristics of the compressor-combined condenser system)

  • 김재돌
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.1001-1012
    • /
    • 1998
  • This paper reports the analysis of dynamic characteristics of air-cooled condenser. At first, there is an assumption that the superheated vapor flows into the condenser inlet. And in order to consider the effect of pressure change in the dynamic characteristics of the condenser the combined system of condenser and compressor was used. By using the equation of energy balance and the equation of mass balance, the basic equation for describing the dynamic characteristics of condenser can be derived. The transfer function for describing dynamic response of the condenser to flow rate change outlet can be obtained from using linearizations and Laplace transformations of the equation. From this transfer function, analytical investigation which affects the frequency responses of condenser has been made. Through this study, it became possible that the information about the dynamic characteristics of air-cooled condenser is offered. While the average heat transfer coefficient of the refrigerant side necessary for the theoretical calculation of the dynamic characteristics is given by calculation method for the tube length and pressure drop of air-cooled condenser.

SI 열화학 수소 생산 공정 요오드 결정화기 열-물질 수지 계산 (Calculation of Mass-Heat Balance on the Iodine Crystallizer for SI Thermochemical Hydrogen Production Process)

  • 이평종;박병흥
    • 융복합기술연구소 논문집
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2015
  • SI thermochemical hydrogen production process achieves water splitting into hydrogen and oxygen through three chemical reactions. The process is comprised of three sections and one of them is HI decomposition into $H_2$ and $I_2$ called as Section III. The production of $H_2$ included processes involving EED for concentrating a product stream from Section I. Additionally an $I_2$ crystallization would be considered to reduce burden on EED by removing certain amount of $I_2$ out of a process stream prior to EED. In this study, the current thermodynamic model of SI process was briefly described and the calculation results of the applied Electrolytes NRTL model for phase equilibrium calculations was illustrated for ternary systems of Section III. We calculated temperature and heat duty of an $I_2$ crystallizer and heat duty of heaters using UVa model and heat balance equation of simulation tool. The results were expected to be used as operation information in optimizing HI decomposition process and setting up material balance throughout SI process.

UNTEADY HEAT FLOW AND TEMPERATURE VARIATION IN HUMAN SST REGIONS

  • Sanyal, D.C.;Maji, N.K.
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.731-744
    • /
    • 2002
  • The temperature distribution in human skin and subdermal tissue layer is presented using bioheat transfer equation. The body temperature is determined by the balance between heat produced and heat lost by our body. The time-dependent solutions have been found to be affected by the metabolic heat generation rate, blood mass flow, the rate of evaporation of perspiration and also by the atmospheric temperature. The analytic solutions for different layers have been calculated numerically and are also shown graphically.

타원방정식에 의한 벽면 부근의 난류열유속 모형화 (Near-Wall Modelling of Turbulent Heat Fluxes by Elliptic Equation)

  • 신종근;안정수;최영돈
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.526-534
    • /
    • 2004
  • A new second-moment closure model for turbulent heat fluxes is proposed on the basis of the elliptic equation. The new model satisfies the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also has the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. The predictions of turbulent heat transfer in a channel flow have been carried out with constant wall heat flux and constant wall temperature difference boundary conditions respectively. The velocity field variables are supplied from the DNS data and the differential equations only fur the mean temperature and the scalar flux are solved by the present calculations. The present model is tested by direct comparisons with the DNS to validate the performance of the model predictions. The prediction results show that the behavior of the turbulent heat fluxes in the whole region is well captured by the present model.