• 제목/요약/키워드: Healthcare technology

검색결과 1,492건 처리시간 0.021초

A Comparative Study of the Standard Uptake Values of the PET Reconstruction Methods; Using Contrast Enhanced CT and Non Contrast Enhanced CT (PET/CT 영상에서 조영제를 사용하지 않은 CT와 조영제를 사용한 CT를 이용한 감쇠보정에 따른 표준화섭취계수의 비교)

  • Lee, Seung-Jae;Park, Hoon-Hee;Ahn, Sha-Ron;Oh, Shin-Hyun;NamKoong, Heuk;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • 제12권3호
    • /
    • pp.235-240
    • /
    • 2008
  • Purpose: At the beginning of PET/CT, Computed Tomography was mainly used only for Attenuation Correction (AC), but as the performance of the CT have been increase, it could give improved diagnostic information with Contrast Media. But it was controversial that Contrast Media could affect AC on PET/CT scan. Some submitted thesis' show that Contrast Media could overestimate when it is for AC data processing. On the contrary, the opinion that Contrast Media could be possible to affect the alteration of SUV because of the overestimated AC. But it does not have a definite effect on the diagnosis. Thus, the affection of Contrast Media on AC was investigated in this study. Materials and Methods: Patient inclusion criteria required a history of a malignancy and performance of an integrated PET/CT scan and contrast- enhanced CT scan within a 1-day period. Thirty oncologic patients who had PET/CT scan from December 2007 to June 2008 underwent staging evaluation and met these criteria. All patients fasted for at least 6 hr before the IV injection of approximately 5.6 MBq/kg (0.15 mCi/kg) of $^{18}F$-FDG and were scanned about 60 min after injection. All patients had a whole body PET/CT performed without IV contrast media followed by a contrast-enhanced CT on the Discovery STe PET/CT scanner. CT data were used for AC and PET images came out after AC. The ROIs drew and measured SUV. A paired t-test of these results was performed to assess the significance of the difference between the SUV obtained from the two attenuation corrected PET images. Results: The mean and maximum Standardized Uptake Values (SUV) for different regions averaged over all Patients. Comparing before using Contrast Media and after using, Most of ROIs have the increased SUV when it did Contrast Enhanced CT compare to Non-Contrast enhanced CT. All regions have increased SUV and also their p value was under 0.05 except the mean SUV of the Heart region. Conclusion: In this regard, the effect on SUV measurements that occurs when a contrast-enhanced CT is used for attenuation correction could have significant clinical ramifications. But some submitted thesis insisted that the percentage change in SUV that can determine or modify clinical management of oncology patients is small. Because there was not much difference that could be discovered by interpreter. But obviously the numerical change was occurred and on the stage finding primary region, small change would be base line, such as the region of liver which has greater change than the other regions needs more attention.

  • PDF

Evaluation of Proper Image Acquisition Time by Change of Infusion dose in PET/CT (PET/CT 검사에서 주입선량의 변화에 따른 적정한 영상획득시간의 평가)

  • Kim, Chang Hyeon;Lee, Hyun Kuk;Song, Chi Ok;Lee, Gi Heun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • 제18권2호
    • /
    • pp.22-27
    • /
    • 2014
  • Purpose There is the recent PET/CT scan in tendency that use low dose to reduce patient's exposure along with development of equipments. We diminished $^{18}F$-FDG dose of patient to reduce patient's exposure after setting up GE Discovery 690 PET/CT scanner (GE Healthcare, Milwaukee, USA) establishment at this hospital in 2011. Accordingly, We evaluate acquisition time per proper bed by change of infusion dose to maintain quality of image of PET/CT scanner. Materials and Methods We inserted Air, Teflon, hot cylinder in NEMA NU2-1994 phantom and maintained radioactivity concentration based on the ratio 4:1 of hot cylinder and back ground activity and increased hot cylinder's concentration to 3, 4.3, 5.5, 6.7 MBq/kg, after acquisition image as increase acquisition time per bed to 30 seconds, 1 minute, 1 minute 30 seconds, 2 minute, 2 minutes 30 seconds, 3 minutes, 3 minutes 30 seconds, 4 minutes, 4 minutes 30 seconds, 5 minutes, 5 minutes 30 seconds, 10 minutes, 20 minutes, and 30 minutes, ROI was set up on hot cylinder and back radioactivity region. We computated standard deviation of Signal to Noise Ratio (SNR) and BKG (Background), compared with hot cylinder's concentration and change by acquisition time per bed, after measured Standard Uptake Value maximum ($SUV_{max}$). Also, we compared each standard deviation of $SUV_{max}$, SNR, BKG following in change of inspection waiting time (15minutes and 1 hour) by using 4.3 MBq phantom. Results The radioactive concentration per unit mass was increased to 3, 4.3, 5.5, 6.7 MBqs. And when we increased time/bed of each concentration from 1 minute 30 seconds to 30 minutes, we found that the $SUV_{max}$ of hot cylinder acquisition time per bed changed seriously according to each radioactive concentration in up to 18.3 to at least 7.3 from 30 seconds to 2 minutes. On the other side, that displayed changelessly at least 5.6 in up to 8 from 2 minutes 30 seconds to 30 minutes. SNR by radioactive change per unit mass was fixed to up to 0.49 in at least 0.41 in 3 MBqs and accroding as acquisition time per bed increased, rose to up to 0.59, 0.54 in each at least 0.23, 0.39 in 4.3 MBqs and in 5.5 MBqs. It was high to up to 0.59 from 30 seconds in radioactivity concentration 6.7 MBqs, but kept fixed from 0.43 to 0.53. Standard deviation of BKG (Background) was low from 0.38 to 0.06 in 3 MBqs and from 2 minutes 30 seconds after, low from 0.38 to 0 in 4.3 MBqs and 5.5 MBqs from 1 minute 30 seconds after, low from 0.33 to 0.05 in 6.7 MBqs at all section from 30 seconds to 30 minutes. In result that was changed the inspection waiting time to 15 minutes and 1 hour by 4.3 MBq phantoms, $SUV_{max}$ represented each other fixed values from 2 minutes 30 seconds of acquisition time per bed and SNR shown similar values from 1 minute 30 seconds. Conclusion As shown in the above, when we increased radioactive concentration per unit mass by 3, 4.3, 5.5, 6.7 MBqs, the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the same way, in the change of inspection waiting time (15 minutes and 1 hour), we could find that the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the result of this NEMA NU2-1994 phantom experiment, we found that the minimum acquisition time per bed was 2 minutes 30 seconds for evaluating values of fixed $SUV_{max}$ and SNR even in change of inserting radioactive concentration. However, this acquisition time can be different according to features and qualities of equipment.

  • PDF