• Title/Summary/Keyword: Healthcare date

Search Result 63, Processing Time 0.017 seconds

Phantom Study of the Mutual Influences Between 18F-FDG and 99mTcO4- on the Same Day (18F-FDG와 99mTcO4-를 이용한 당일 검사 시 상호 영향에 대한 Phantom 연구)

  • Ham, Jun Cheol;Park, Min Soo;Bahn, Young Kag;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.68-72
    • /
    • 2014
  • Purpose The nuclear medicine examination, there is a difficulty to carry out the inspection of both on the day of residual isotope due to the half-life. In this study, by studying the mutual influence and $^{18}F$-FDG of $^{99m}TcO_4{^-}$, I would like to explain the matters to be considered in the case of performing the same day. Materials and Methods With the NEMA-1994 Phantom, and experiments were performed 3 times. Create a 1: 4 Background ratio HOT and the $^{99m}TcO_4{^-}$ The first experiment: After underwent SPECT in INFINIA (GE Healthcare, MI, USA), and were injected with $^{18}F$-FDG 37 MBq in the Background area, 13 once for 60 minutes under the same conditions was time Scan. Create a 1: 4 Background ratio HOT and the $^{18}F$-FDG second is: The Scan in PET/CT Discovery 600 (GE Healthcare, MI, USA), and 148 MBq after injection $^{99m}TcO_4{^-}$ the Background area, once for 60 minutes, 6 under the same conditions was time Scan. Create a 1: 4 Background ratio HOT and the $^{18}F$-FDG experiments las, increments of 296 MBq and 148 MBq the 1 Bed Scan after $^{99m}TcO_4{^-}$, was 1 Bed Scan under the same conditions. Non BKG area and HOT, I was measured comparing the Total Counts and SNR or CNR. Results Showed a significant difference in the ratio CNR of enforcement during SPECT $^{18}F$-FDG is, (p>0.05). The $^{99m}TcO_4{^-}$ was no significant difference between the SNR ratio of PET / CT at the time of the effective date (p<0.05). I got the results $^{99m}TcO_4{^-}$ that reduce the Total Counts of PET / CT scan. Conclusion If you make a PET / CT scan, may affect the test using the $^{99m}TcO_4{^-}$ up to 12 hours, when it is performed before the $^{99m}TcO_4{^-}$, does not affect the SNR and SUV, PET / CT scan I reduced the detection efficiency. The inspection of day, we'd like to recommend a way to complement the detection efficiency to increase the inspection time of PET / CT in move forward the inspection using the $^{99m}TcO_4{^-}$.

  • PDF

Characteristics and Clinical Course of Ovarian Hernias in Infants (1세 미만 여아 난소 탈장의 특성과 임상 경과)

  • Choi, Kyoung-Eun;An, So-Yoon;Kim, Kyung-Ah;Ko, Sun-Young;Lee, Yeon-Kyung;Shin, Son-Moon;Han, Byung-Hee
    • Neonatal Medicine
    • /
    • v.15 no.1
    • /
    • pp.80-83
    • /
    • 2008
  • Purpose : Inguinal hernias are common in children and sometimes are associated with dangerous complications, such as incarceration. There are no established management guidelines for ovarian hernias. We have reviewed the clinical course of ovarian hernias in infants. Methods : We reviewed the medical records of female infants diagnosed with ovarian hernias by ultrasonogram at Kwandong University College of Medicine, Cheil General Hospital, and the Women's Healthcare Center between March 2001 and August 2007. We analyzed the patients gestational age, birth weight, age at the time of detection of the inguinal mass, the patients chief complaints, operative time, post-operative complications, and ultrasonographic findings. Results : Eight female infants had ovarian hernias, four of whom were born prematurely. Seven infants had left-sided ovarian hernias, and one infant had a right-sided ovarian hernia. Five infants underwent surgery and there were no postoperative complications or recurrences. Three girls did not have surgery, and the ovarian hernias regressed spontaneously, with no recurrences or complications. The regression time of inguinal masses ranged from 70-161 days after birth. Conclusion : Physical examination to detect movable masses within the labium major in premature female infants is important because the incidence of premature inguinal hernias is much higher than in term infants. No rational medical treatment plans for female ovarian hernias have been published to date. We cared for three girls with spontaneous regression of ovarian hernias. Pediatricians should be aware whether emergent surgery for ovarian hernias is indicated.

A Study on the Medical Application and Personal Information Protection of Generative AI (생성형 AI의 의료적 활용과 개인정보보호)

  • Lee, Sookyoung
    • The Korean Society of Law and Medicine
    • /
    • v.24 no.4
    • /
    • pp.67-101
    • /
    • 2023
  • The utilization of generative AI in the medical field is also being rapidly researched. Access to vast data sets reduces the time and energy spent in selecting information. However, as the effort put into content creation decreases, there is a greater likelihood of associated issues arising. For example, with generative AI, users must discern the accuracy of results themselves, as these AIs learn from data within a set period and generate outcomes. While the answers may appear plausible, their sources are often unclear, making it challenging to determine their veracity. Additionally, the possibility of presenting results from a biased or distorted perspective cannot be discounted at present on ethical grounds. Despite these concerns, the field of generative AI is continually advancing, with an increasing number of users leveraging it in various sectors, including biomedical and life sciences. This raises important legal considerations regarding who bears responsibility and to what extent for any damages caused by these high-performance AI algorithms. A general overview of issues with generative AI includes those discussed above, but another perspective arises from its fundamental nature as a large-scale language model ('LLM') AI. There is a civil law concern regarding "the memorization of training data within artificial neural networks and its subsequent reproduction". Medical data, by nature, often reflects personal characteristics of patients, potentially leading to issues such as the regeneration of personal information. The extensive application of generative AI in scenarios beyond traditional AI brings forth the possibility of legal challenges that cannot be ignored. Upon examining the technical characteristics of generative AI and focusing on legal issues, especially concerning the protection of personal information, it's evident that current laws regarding personal information protection, particularly in the context of health and medical data utilization, are inadequate. These laws provide processes for anonymizing and de-identification, specific personal information but fall short when generative AI is applied as software in medical devices. To address the functionalities of generative AI in clinical software, a reevaluation and adjustment of existing laws for the protection of personal information are imperative.