• 제목/요약/키워드: Healthcare Device

검색결과 379건 처리시간 0.025초

스마트 디바이스 기반의 헬스캐어에 관한 연구 (A Study on the Healthcare based on the Smart Device)

  • 박춘명
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.838-839
    • /
    • 2016
  • IEEE 802.15.4는 저전력, 낮은 가격이지만, 긴 생애의 응용에 있어서는 무선센서네트워크를 포함한다. 현재, IP 아키텍쳐인건 아니건 WSN에서 사용되는 802.15.4의 연결은 통신속도 이하이다. 그러한 논거는 어떤 IP의 실제 효율성의 경우의 실험 측정의 확신없이 오랜 기간동안 지속되어 왔다. RFC944에서는 IETF는 저전력, 개인영역네트워크상의 IPv6 통신을 가능하게 하는 6LoWPAN의 규격을 제안하였다. 본 논문에서는 이러한 통신의 방향과 미래의 값진 주제로서 이에 대한 제안을 한다.

  • PDF

엑스선 그레이 스케일 리소그래피를 활용한 반원형 단면의 서브 마이크로 선 패턴의 바이오멤스 플랫폼 응용 (X-ray grayscale lithography for sub-micron lines with cross sectional hemisphere for Bio-MEMS application)

  • 김강현;김종현;남효영;김수현;임근배
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.170-174
    • /
    • 2021
  • As the rising attention to the medical and healthcare issue, Bio-MEMS (Micro electro mechanical systems) platform such as bio sensor, cell culture system, and microfluidics device has been studied extensively. Bio-MEMS platform mostly has high resolution structure made by biocompatible material such as polydimethylsiloxane (PDMS). In addition, three dimension structure has been applied to the bio-MEMS. Lithography can be used to fabricate complex structure by multiple process, however, non-rectangular cross section can be implemented by introducing optical apparatus to lithography technic. X-ray lithography can be used even for sub-micron scale. Here in, we demonstrated lines with round shape cross section using the tilted gold absorber which was deposited on the oblique structure as the X-ray mask. This structure was used as a mold for PDMS. Molded PDMS was applied to the cell culture platform. Moreover, molded PDMS was bonded to flat PDMS to utilize to the sub-micro channel. This work has potential to the large area bio-MEMS.

3.0T 자기공명영상을 이용한 잡음전력스펙트럼 특성 평가 (Evaluation of Noise Power Spectrum Characteristics by Using Magnetic Resonance Imaging 3.0T)

  • 민정환;정회원;김승철
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권1호
    • /
    • pp.31-37
    • /
    • 2021
  • This study aim of quantitative assessment of Noise Power Spectrum(NPS) and image characteristics of by acquired the optimal image for noise characteristics and quality assurance by using magnetic resonance imaging(MRI). MRI device was (MAGNETOM Vida 3.0T MRI; Siemense healthcare system; Germany) used and the head/neck shim MR receive coil were 20 channels coil and a diameter 200 mm hemisphere phantom. Frequency signal could be acquired the K-space trajectory image and white image for NPS. The T2 image highest quantitatively value for NPS finding of showed the best value of 0.026 based on the T2 frequency of 1.0 mm-1. The NPS acquired of showed that the T1 CE turbo image was 0.077, the T1 CE Conca2 turbo image was 0.056, T1 turbo image was 0.061, and the T1 Conca2 turbo image was 0.066. The assessment of NPS image characteristics of this study were to that could be used efficiently of the MRI and to present the quantitative evaluation methods and image noise characteristics of 3.0T MRI.

모바일 기반의 '근감소증' 예측 및 모니터링 시스템 설계 및 구현 (Design and Implementation of a Mobile-based Sarcopenia Prediction and Monitoring System)

  • 강현민;박채은;주미니나;서석교;전용관;김진우
    • 한국멀티미디어학회논문지
    • /
    • 제25권3호
    • /
    • pp.510-518
    • /
    • 2022
  • This paper confirmed the technical reliability of mobile-based sarcopenia prediction and monitoring system. In implementing the developed system, we designed using only sensors built into a smartphone without a separate external device. The prediction system predicts the possibility of sarcopenia without visiting a hospital by performing the SARC-F survey, the 5-time chair stand test, and the rapid tapping test. The Monitoring system tracks and analyzes the average walking speed in daily life to quickly detect the risk of sarcopenia. Through this, it is possible to rapid detection of undiagnosed risk of undiagnosed sarcopenia and initiate appropriate medical treatment. Through prediction and monitoring system, the user may predict and manage sarcopenia, and the developed system can have a positive effect on reducing medical demand and reducing medical costs. In addition, collected data is useful for the patient-doctor communication. Furthermore, the collected data can be used for learning data of artificial intelligence, contributing to medical artificial intelligence and e-health industry.

웨어러블 디바이스를 위한 실시간 부정맥 검출 및 BLE기반 데이터 통신 알고리즘 개발과 적용 (Development of Real-Time Arrhythmia Detection and BLE-based Data Communication Algorithm for Wearable Devices)

  • 맹수훈;김대관;이현석;문효정
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권6호
    • /
    • pp.399-408
    • /
    • 2022
  • Because arrhythmia occurs irregularly, it should be examined for at least 24 hours for accurate diagnosis. For this reason, this paper developed firmware software for arrhythmia detection and prevented consumption of temporal and human resources and enabled continuous management and early diagnosis. Prior to the experiment, the interval between the R peaks of the QRS Complex was calculated using the Pan-Tompkins algorithm. The developed firmware software designed and implemented an algorithm to detect arrhythmia such as tachycardia, bradycardia, ventricular tachycardia, persistent tachycardia, and non-persistent tachycardia, and a data transmission format to monitor the collected data based on BLE. As a result of the experiment, arrhythmia was found in real time according to the change in BPM as designed in this paper. And the data quality for BLE communication was verified by comparing the sensor's serial communication value with the Android application reception value. In the future, wearable devices for real-time arrhythmia detection will be lightweight and developed firmware software will be applied.

Comparison of Abductor Hallucis Contractility between Regular and Flat Feet during SFE with SLSKB Test

  • Moon, Dong-Chul;Jung, Ju-Hyeon
    • PNF and Movement
    • /
    • 제20권3호
    • /
    • pp.409-416
    • /
    • 2022
  • Purpose: This study compared and analyzed the contractility of the abductor hallucis (AbdH), an intrinsic foot muscle, between flat feet and normal feet during a movement control test (single-leg small knee band test) using ultrasonography. Methods: A total of 23 subjects with (n = 11) and without (n = 12) flatfoot were included in the study. Each subject performed the short foot exercises (SFE) with a single-leg small knee bend (SLSKB) test, which is a functional movement. An ultrasound device was used to collect data regarding the changes in the contractility of the AbdH. Results: Intergroup comparison showed that dorsoplantar thickness was significantly reduced at baseline and during the SFE with SLSKB in the flatfoot group (p < 0.05). Intragroup comparison showed that the cross-sectional area significantly improved when the SFE was performed with SLSKB in the control group (p < 0.05). Conclusion: In this study, it was observed that the AbdH had inadequate contractility during the SLSKB test in subjects with flatfoot; therefore, it is important to train the contraction of the AbdH via functional movements during clinical interventions for subjects with flatfoot.

A Study on the Relationship between Ultraviolet Rays and Skin Color Using a Photoplethysmography Sensor

  • So-Yae Hur;Sun-Jib Kim
    • International Journal of Advanced Culture Technology
    • /
    • 제11권1호
    • /
    • pp.363-369
    • /
    • 2023
  • In this study, to check the function of managing the severity of ultraviolet rays with a smart watch, a popular health care IT device, It was tested whether measuring heart rate using a PPG(Photoplethysmography) sensor representatively used in a smart watch could tell skin changes caused by ultraviolet rays. Through this experiment, we examined the possibility that the skin color tanned by ultraviolet rays can be determined only by the heart rate measurement function of the PPG sensor. In addition, the possibility of expanding the heart rate measurement function of the PPG sensor to the use of skin condition management was considered. we used an Arduino-based reflective PPG sensor to measure changes in heart rate by selecting body sites with high and low UV rays exposure. A significant value was derived through tests considering factors such as gender, UV exposure, and age. As a result, the study identified the possibility of adding ultraviolet rays and skincare items to future smart watch healthcare items and the possibility of expanding skin measurement methods. It is also possible to suggest the direction of future research.

등-허리뼈 분리동작과 슬럼프 동작이 등-허리뼈 척추세움근과 배곧은근 활성도에 미치는 효과 (The Effects of Thoracic-Lumbar Dissociate and Slump Motions on Thoracic-Lumbar Erector Spinae and Rectus Abdominis Activity)

  • 정주현
    • PNF and Movement
    • /
    • 제20권1호
    • /
    • pp.51-58
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the effect of thoracic-lumbar dissociation motion and slump motion on thoracic-lumbar erector spinae and rectus abdominis muscle activity. Methods: Seventeen healthy adult volunteers participated in this study. All participants performed two motions (thoracic-lumbar dissociation motion, slump motion). Muscle activation during the two motions was measured using a surface electromyography device. The data from this were collected from the iliocostalis thoracis, iliocostalis lumborum, and rectus abdominis. The activities of these muscles before and after each motion were then compared. Results: The iliocostalis thoracis activation was significantly greater during the thoracic-lumbar dissociation motion than during the slump motion (p <0.05). The iliocostalis lumborum activation was greater during the slump motion than during the thoracic-lumbar dissociation motion (p <0.05). The rectus abdominis activation was lesser during the slump motion than during the thoracic-lumbar dissociation motion (p <0.05). Conclusion: This study confirmed that individual contraction of the erector spinae muscles is possible during thoracic-lumbar dissociation motion, which increases the stability of the thoracic spine. In addition, this motion could improve control of the rectus abdominis. Therefore, thoracic-lumbar dissociation motion should be considered for rehabilitation programs for patients with kyphosis and back pain.

강원특별자치도에 거주하는 성인의 디지털 구강건강 문해력과 디지털 기기 활용도의 관련성 (Relationship between digital oral health literacy and digital device utilization among adults in Gangwon-do)

  • 박찬영;김남희;오재우
    • 한국치위생학회지
    • /
    • 제24권2호
    • /
    • pp.149-162
    • /
    • 2024
  • Objectives: This study aimed to identify the level of digital oral health literacy among Korean adults in Gangwon-do. Methods: A survey was conducted through face-to-face interviews with adults aged 30-89 residing in Gangwon-do, South Korea. The independent variables were socio-demographic characteristics, including gender, age, education level, income, and occupation. The dependent variable was digital oral health literacy. The statistical analysis included Independent t-test, one-way ANOVA, Pearson correlation analysis, and multiple linear regression analysis, all performed using the SPSS 27.0 software program. Results: The elderly and those with poor socioeconomic status (p<0.001) had lower average scores due to poor digital oral health literacy. The ease of searching for oral health information and the utilization of digital devices to search for information on oral health displayed a significant relationship (r=0.730, p<0.001). To develop the use of digital devices, simplifying the search for oral information (p<0.001) is essential. Conclusions: All socio-demographic characteristics, except gender, displayed a correlation with the level of digital oral health literacy. Both environmental and individual aspects of the respondents' living conditions must be considered to improve digital oral health literacy.

As how artificial intelligence is revolutionizing endoscopy

  • Jean-Francois Rey
    • Clinical Endoscopy
    • /
    • 제57권3호
    • /
    • pp.302-308
    • /
    • 2024
  • With incessant advances in information technology and its implications in all domains of our lives, artificial intelligence (AI) has emerged as a requirement for improved machine performance. This brings forth the query of how this can benefit endoscopists and improve both diagnostic and therapeutic endoscopy in each part of the gastrointestinal tract. Additionally, it also raises the question of the recent benefits and clinical usefulness of this new technology in daily endoscopic practice. There are two main categories of AI systems: computer-assisted detection (CADe) for lesion detection and computer-assisted diagnosis (CADx) for optical biopsy and lesion characterization. Quality assurance is the next step in the complete monitoring of high-quality colonoscopies. In all cases, computer-aided endoscopy is used, as the overall results rely on the physician. Video capsule endoscopy is a unique example in which a computer operates a device, stores multiple images, and performs an accurate diagnosis. While there are many expectations, we need to standardize and assess various software packages. It is important for healthcare providers to support this new development and make its use an obligation in daily clinical practice. In summary, AI represents a breakthrough in digestive endoscopy. Screening for gastric and colonic cancer detection should be improved, particularly outside expert centers. Prospective and multicenter trials are mandatory before introducing new software into clinical practice.