• Title/Summary/Keyword: Health damage

Search Result 1,935, Processing Time 0.026 seconds

A Study on Impact of Flood Disaster and Quality of Life among the Flood Victims (수재민의 수해로 인한 영향과 삶의 질에 관한 연구)

  • Lee, Seon-Hye
    • Research in Community and Public Health Nursing
    • /
    • v.15 no.1
    • /
    • pp.145-154
    • /
    • 2004
  • Purpose: This study was performed to identify the extent of flood damage, the quality of life(QOL) and their relationships to flood victims. Method: The subjects of this study were 248(men 100, women 148) who live around seven areas in K province impacted by Typhoon Rusa. Data was collected between February 25 and March 21, 2003 by structured questionnaires. The instruments were composed of two parts. The extent of flood damage were the impacts of daily living by revised from Ginexi et aI.(2000). QOL was used to WHOQOL BREF Korean Version by Min et al.(2002). The SPSS program was used for its descriptive, reliability, and correlation analysis. Result: The means of the extent of flood damage were: daily living 1.88, economy 4.60, and health 3.75. The mean of total QOL was 2.95: social domain 3.29, overall satisfaction 3.09, physical domain 3.06, psychological domain 2.95, and environmental domain 2.68. The negative correlations were between the Impact of daily living and Total QOL(r=-.143, p<.05), Physical QOL(r=-.220, p<.01) and Overall satisfaction (r=-141, p<.05). Conclusion: This study has learned that the impact of the flood had negative effects on the flood victims quality of life, and the difficulties they faced in their daily lives. Further research will be needed to explore influencing factors on QOL in disaster victims.

  • PDF

Practicalities of structural health monitoring

  • Shrive, P.L.;Brown, T.G.;Shrive, N.G.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.357-367
    • /
    • 2009
  • Structural Health Monitoring (SHM), particularly remote monitoring, is an emerging field with great potential to help infrastructure owners obtain more and up-to-date knowledge of their structures. The methodology could provide supplemental information to guide the frequency and extent of visual inspections, and the possible need for maintenance. The instrumentation for a SHM system needs to be developed with longevity and the objectives for the system in mind. Sensors need to be selected for reliability and durability, sited where they provide the maximum information for the objectives, and where they can be accessed and replaced should the need arise over the monitoring period. With the rapid changes now occurring with sensors and software, flexibility needs to be in place to allow the system to be upgraded over time. Damage detection needs to be considered in terms of the type of damage that needs to be detected, informing maintenance requirements, and how detection can be achieved. Current vibration analysis techniques appear not yet to have achieved the necessary sensitivity for that purpose. Societal factors will influence the design of a SHM system in terms of the sophistication of the instrumentation and methodology employed.

Application of smart piezoelectric transducers to structural health monitoring (구조물 건전성 감시를 위한 스마트 PZT센서의 적용성 연구)

  • Park, Seung-Hee;Yi, Jin-Hak;Lee, Jong-Jae;Yun, Chung-Bang;Noh, Yong-Rae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.549-555
    • /
    • 2003
  • The objective of かis study is to investigate the feasibility of piezoelectric transducers as a damage detection system for civil infrastructures. There have been considerable amount of efforts by the modal analysis community to localize damage and evaluate its severity without looking at a reliable way to excite the structure. The detection of damages by modal analysis and similar vibration techniques depends upon the knowledge and estimation of various modal parameters. In addition to the associated difficulties, such low-frequency dynamic response based techniques fail to detect incipient damages. Smart piezoelectric ceramic (PZT) transducers which act as both actuators and sensors in a self-analyzing manner are emerging to be effective in non-parametric health monitoring of structural systems. In this paper, we present the results of an experimental study for the detection of damages using smart PZT transducers on the steel plate. The method of extracting the impedance characteristics of the PZT transducer, which is electro-mechanically coupled to the host structure, is adopted for damage detection. Two damages are simulated and assessed by the bonded PZT transducers for characterization. The experimental results verified the efficacy of the proposed approach and provided a demonstration of good robustness at the realistic steel structures, emphasizing the great potential for developing an automated in situ structural health monitoring system for application to large civil infrastructures without the need to blow the modal parameters.

  • PDF

Clinical Outcomes of Occupational Exposure to N,N-Dimethylformamide: Perspectives from Experimental Toxicology

  • Kim, Tae-Hyun;Kim, Sang-Geon
    • Safety and Health at Work
    • /
    • v.2 no.2
    • /
    • pp.97-104
    • /
    • 2011
  • N,N-Dimethylformamide (DMF) is globally used as an organic solvent in the production of synthetic leather and resins because of its low volatility, making it an attractive industrial material. Despite its excellent property as a chemical solvent, utilization of DMF is somewhat controversial nowadays due to its hazardous effects on exposed workers in work places. Many toxification cases are being reported globally and the number of cases of liver damage is still increasing in developing countries. On account of this, a series of epidemiologic surveys are being conducted to understand the degrees of liver damage caused by DMF exposure. Furthermore, many investigations have been performed to clarify the mechanism of DMF-induced liver toxicity using both human and experimental animal models. This review summarizes the current occupational cases reported on liver damage from workers exposed to DMF in industrial work places and the research results that account for DMF-induced liver failure and possible carcinogenesis. The findings reviewed here show the synergistic toxicity of DMF exposure with other toxicants, which might occur through complicated but distinct mechanisms, which may extend our knowledge for establishing risk assessments of DMF exposure in industrial work places.

An image-based deep learning network technique for structural health monitoring

  • Lee, Dong-Han;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.799-810
    • /
    • 2021
  • When monitoring the structural integrity of a bridge using data collected through accelerometers, identifying the profile of the load exerted on the bridge from the vehicles passing over it becomes a crucial task. In this study, the speed and location of vehicles on the deck of a bridge is reconfigured using real-time video to implicitly associate the load applied to the bridge with the response from the bridge sensors to develop an image-based deep learning network model. Instead of directly measuring the load that a moving vehicle exerts on the bridge, the intention in the proposed method is to replace the correlation between the movement of vehicles from CCTV images and the corresponding response by the bridge with a neural network model. Given the framework of an input-output-based system identification, CCTV images secured from the bridge and the acceleration measurements from a cantilevered beam are combined during the process of training the neural network model. Since in reality, structural damage cannot be induced in a bridge, the focus of the study is on identifying local changes in parameters by adding mass to a cantilevered beam in the laboratory. The study successfully identified the change in the material parameters in the beam by using the deep-learning neural network model. Also, the method correctly predicted the acceleration response of the beam. The proposed approach can be extended to the structural health monitoring of actual bridges, and its sensitivity to damage can also be improved through optimization of the network training.

Vitamin E Modulates Radiation-induced Oxidative Damage in Mice Fed a High-Lipid Diet

  • Shin, Sung-Jae
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.190-195
    • /
    • 2003
  • The Vitamin E (VE) effect was examined on oxidative damage to DNA, lipids, and protein in mice that were fed various levels of lipid diets after total body irradiation (TBI) with X-rays at 2 Gy. No increase of 8-hydroxydeoxyguanosine (8OHdG) by TBI was observed in the +VE group; however, in the case of the -VE group, a significantly higher 8OHdG level was observed in the high-lipid group than in the low- or basal-lipid group. In the groups with TBI, the concentration of thiobarbituric reactive substances (TBARS) only significantly increased in the high-lipid (-VE) group. These changes in TBARS, due to TBI, were not detected in other groups. The contents of protein carbonyls only increased in the (-VE) group. The contents of protein carbonyls was significantly different between the (+VE) and the (-VE) groups, regardless of the lipid levels. The concentrations of GSH, vitamins C and E in the liver were lower, and the concentration of non-heme iron in the liver was higher in the high-lipid group than in the low- and basal-lipid groups. These concentrations in the high-lipid group were significantly different between the (+VE) and the (-VE) groups. These results strongly suggest that mice that are fed a high-lipid diet are susceptible to TBI-induced oxidative damage. Also, decreases in the GSH levels and an increase in the iron level are involved in the mechanism of this susceptibility.

The Problems and Alternatives of The Subrogation Payment System for Damage (의료분쟁조정법상 손해배상금 대불제도의 문제점과 개선방안)

  • Lee, Baek-Hyu
    • The Korean Society of Law and Medicine
    • /
    • v.12 no.2
    • /
    • pp.163-187
    • /
    • 2011
  • On March 11, 2011, the Korea National Assembly finally passed the bill on the Damage Relief on the Medical Malpractice and Mediation for Medical Dispute. One of the features of this Act is including "The Subrogation Payment System for Damage (abbreviated SPSD)". This System is that 'Korean Medical Dispute Mediation-Arbitration Board' pays the damages, instead of the health care provider, for the patient who isn't paid damages by the health care provider despite of the Mediation or ruling. The purpose of this study is to search the problems and make improvement on SPSD. This System was introduced extreamly to the patients in order to induce them to the mediation. However,there remains several problems. In this articles, I have examined thoroughly the legal issues on SPSD. There are legal issues about the methods and ratio of the financial burden. In this connection, wide discretionary authority has been granted to administrative agencies specifically. On this account, this System clearly contains elements of a violation against the Constitutional Law. Moreover, this System can be broadly applied to the case of court ruling or the Korea Consumer Agency's mediation. But these measures go against the aim of legislation that the medical dispute can be resolved through the mediation or arbitration by this Act. In the end, these problems must be revised through the additional discussion.

  • PDF

Crack detection in rectangular plate by electromechanical impedance method: modeling and experiment

  • Rajabi, Mehdi;Shamshirsaz, Mahnaz;Naraghi, Mahyar
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.361-369
    • /
    • 2017
  • Electromechanical impedance method as an efficient tool in Structural Health Monitoring (SHM) utilizes the electromechanical impedance of piezoelectric materials which is directly related to the mechanical impedance of the host structure and will be affected by damages. In this paper, electromechanical impedance of piezoelectric patches attached to simply support rectangular plate is determined theoretically and experimentally in order to detect damage. A pairs of piezoelectric wafer active sensor (PWAS) patches are used on top and bottom of an aluminum plate to generate pure bending. The analytical model and experiments are carried out both for undamaged and damaged plates. To validate theoretical models, the electromechanical impedances of PWAS for undamaged and damaged plate using theoretical models are compared with those obtained experimentally. Both theoretical and experimental results demonstrate that by crack generation and intensifying this crack, natural frequency of structure decreases. Finally, in order to evaluate damage severity, damage metrics such as Root Mean Square Deviation (RMSD), Mean Absolute Percentage Deviation (MAPD), and Correlation Coefficient Deviation (CCD) are used based on experimental results. The results show that generation of crack and crack depth increasing can be detectable by CCD.

Cytoprotection Against Oxidative Damage by Nrf2-regulated Genes

  • Kwak, Mi-Kyoung;Kensler, Thomas W.
    • Toxicological Research
    • /
    • v.23 no.3
    • /
    • pp.207-214
    • /
    • 2007
  • Chronic oxidative stress produced by exposure to environmental chemicals or pathophysiological states can lead animals to aging, carcinogenesis and degenerative diseases. Indirect antioxidative mechanisms, in which natural or synthetic agents are used to coordinately induce the expression of cellular antioxidant capacity, have been shown to protect cells and organisms from oxidative damages. Electrophile and free radical detoxifying enzymes, which were originally identified as the products of genes induced by cancer chemopreventive agents, are members of this protective system. The NFE2 family transcription factor Nrf2 was found to govern expression of these detoxifying enzymes, and screening for Nrf2-regulated genes has identified many gene categories involved in maintaining cellular redox potential and protection from oxidative damage as Nrf2 downstream genes. Further, studies using Nrf2-deficient mice revealed that these mutant mice showed more susceptible phenotypes towards exposure to environmental chemicals/carcinogens and in oxidative stress related disease models. With the finding that cancer chemopreventive efficacy of indirect antioxidants (enzyme inducers) is lost in the absence of Nrf2, a central role of Nrf2 in the antioxidative protective system has been firmly established. Promising results from cancer prevention clinical trials using enzyme inducers propose that pharmacological interventions that modulate Nrf2 can be an effective strategy to protect tissues from oxidative damage.

Thıamıne Defıcıency and Wernıcke-Korsakoff Syndrome Effects on Vestıbular System

  • Eshita, Ishrat Rafique
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.6
    • /
    • pp.1-4
    • /
    • 2019
  • Wernicke korsakoff syndrome is caused by thiamine deficiency in the body. Thiamine not available in the body, is a substance to be taken from outside with foods. There are some conditions that reduce the metabolism of thiamine taken from the body and cause a vital risk. The most important factor is alcoholism. Wernicke Korsakoff syndrome produces both neurological and vestibular symptoms. At the same time, the damage of these symptoms to the patient psychology cannot be ignored. The aim of this study is to investigate the damage and mechanism of the syndrome in the vestibular system. In this study, we investigated vestibular symptoms of Wernicke Korsakoff syndrome due to thiamine deficiency, differences of vestibular system according to individuals and mechanism of damage caused by syndrome in vestibular system. Thiamine deficiency is caused by Wernicke Karsokoff syndrome with some external factors. This syndrome shows the most important effects of alcoholism. It causes neurological, vestibular and psychological symptoms. In this context, we can say that thiamine deficiency is a disease that causes damage in the vestibular system due to nystagmus formation and imbalance. The most important detail in the treatment stage is the detailed evaluation of symptoms associated with each other.