• Title/Summary/Keyword: Head-suspension

Search Result 72, Processing Time 0.029 seconds

Design and Optimization of Suspension with Optical Flying Head Using Integrated Optimization Frame (통합최적프레임을 사용한 광부상헤드를 탑재한 서스팬션의 최적화)

  • Kim, Ji-Won;Park, Kyoung-Su;Yoon, Sang-Joon;Choi, Dong-Hoon;Park, Young-Pil;Lee, Jong-Soo;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.161-168
    • /
    • 2005
  • This paper optimizes the optical flying head(OFH) suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. The problem formulation for the optimization is suggested to improve the dynamic compliance of OFH and to shift the resonant frequencies caused tracking errors to high frequency domain. Furthermore, the minimization of the effective suspension mass that leads to decrease the so-called 'lift-off' as the disk-head separation acceleration divided by the suspension load is taken into consideration. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. The advanced suspension that reduces the effective mass of the suspension and increases the resonant frequencies of sway and $2^{nd}$ torsion over 10kHz is achieved by using the integrated optimization frame.

  • PDF

A Study on Shape Design of NFR Suspension for Optimal Dynamic Characteristics (NFR 서스펜션의 동특성을 고려한 형상설계에 관한 연구)

  • Eun, Gil-Soo;Kim, Noh-Yu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.771-776
    • /
    • 2002
  • Optimal shape of the NFR suspension is studied and developed to improve the dynamic performance and reduce the vibration of the suspension system including a optical head slider. Since accurate position control and stability of the slider motion are highly required in NFR due to the narrower track width and the heavier slider than HDD slider with the low flying height, the dynamic characteristics of the suspension are very important to the mechanical performance of the system. The first natural frequencies in flexural and lateral motion of the suspension are critical factors affecting the dynamics and stability of the flying head, so that the dynamic parameters should be designed properly to avoid an excessive vibration or a crash of the slider on the disk. This paper optimizes the shape of the suspension based on homogenization method in NASTRAN and develops a new suspension shape for NFR system. The suspension is tested on experiment to verify the improvement of the dynamic characteristics.

  • PDF

Shock Analysis of Magnetic Rotating Disk and Head (자기 회전 디스크와 헤드의 충격해석)

  • 장영배;박대경;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.533-538
    • /
    • 2002
  • This research demonstrates the transient response of a head disk assembly subjected to a half-sine shock pulse in the axial direction. In case of disk analysis, the numerical method presented by Barasch and Chen is used. Galerkin method is used with mode shape by numerical method. head-suspension system is modeled by the cantilever in order to get simulation results. Simulation results about total system of HDA are calculated by Runge-Kutta method.

  • PDF

Optimal Design of Suspension for Micro Optical Disk Drive (마이크로 광디스크 드라이브 서스펜션의 최적 설계)

  • Jeon, Joon-Ho;Chun, Jung-Il;Park, No-Chul;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.570-575
    • /
    • 2002
  • Servo performance of a disk drive is greatly affected by the mechanical resonance frequencies of the head gimbal assembly (HSA). It is important factor to allow broader bandwidths for servo system in improving overall drive performance. In this paper, an optimal design for ODD suspension is attempted to increase resonance frequencies in tracking direction. Initial model was designed and the design parameter was defined to the model. The mode frequency variation for the change of design parameter was observed by modal analysis using the finite element method(FEM). The sensitivity matrix was calculated from the observed data and so through sensitivity analysis, an optimized ODD suspension was designed to have the higher resonant frequency than the initial model.

  • PDF

Dynamic Shock Simulation of Head-gimbal Assembly in Micro MO Drives (초소형 광자기 드라이브용 HGA의 동적 충격 시뮬레이션)

  • 오우석;홍어진;박노철;양현석;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.189-194
    • /
    • 2004
  • As a disk drive becomes widely used in portable environments, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes In contact with outer shock disturbance, the system gets critical damage in head-gimbal assembly or disk. This paper describes analysis of a HGA(head-gimbal assembly) in micro MO drives to shock loading during both non-operating state and operating state. A finite element model which consists of the disk, suspension, slider and air bearing was used to find structural response of micro MO drives. In the operational case. the air bearing is approximated with four linear elastic springs. The commercially available finite element solver, ANSYS/LS-DYNA, is used to simulate the shock response of the HGA in micro MO drives. In this paper, the mechanical robustness of the suspension is simuiated considering the shock responses of the HGA.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

Shock Analysis of Head and Disk in Hard Disk Drive According to Various Rotating Speed (하드디스크 드라이브의 회전속도 변화에 따른 디스크와 헤드의 충격해석)

  • 박대경;박노철;박영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1075-1082
    • /
    • 2004
  • This research demonstrates the shock response analysis of a head disk assembly subjected to a half-sine shock pulse in the axial direction. In case of disk analysis, the numerical method presented by Barasch and Chen is used. Galerkin method is used with mode shape by numerical method. Head-suspension system is modeled as the cantilever in order to get simulation results. Simulation results of HDA are calculated by Runge-Kutta method. Finally, shock responses of head and disk are analyzed according to the change of the rotating speed of the disk.

The humeral suspension technique: a novel operation for deltoid paralysis

  • de Joode, Stijn GCJ;Walbeehm, Ralf;Schotanus, Martijn GM;van Nie, Ferry A;van Rhijn, Lodewijk W;Samijo, Steven K
    • Clinics in Shoulder and Elbow
    • /
    • v.25 no.3
    • /
    • pp.240-243
    • /
    • 2022
  • Isolated deltoid paralysis is a rare pathology that can occur after axillary nerve injury due to shoulder trauma or infection. This condition leads to loss of deltoid function that can cause glenohumeral instability and inferior subluxation, resulting in rotator cuff muscle fatigue and pain. To establish dynamic glenohumeral stability, a novel technique was invented. Humeral suspension is achieved using a double button implant with non-resorbable high strength cords between the acromion and humeral head. This novel technique was used in two patients with isolated deltoid paralysis due to axillary nerve injury. The results indicate that the humeral suspension technique is a method that supports centralizing the humeral head and simultaneously dynamically stabilizes the glenohumeral joint. This approach yielded high patient satisfaction and reduced pain. Glenohumeral alignment was improved and remained intact 5 years postoperative. The humeral suspension technique is a promising surgical method for subluxated glenohumeral joint instability due to isolated deltoid paralysis.

Investigation of Interface between Slider and Plastic Disk for Optical Head (Optical head를 고려 한 slider와 plastic disk의 interface에 대한 연구)

  • 박진무;정구현;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.193-198
    • /
    • 2000
  • Near-field recording NFR), advanced optical storage technology, relies on maintaining a small gap between the optical head and the media. This can be accomplished by utilizing the flying optical head concept as in the magnetic recording. In this research, slider/suspension system and plastic disk are tested for their head/disk interface performance. CSS tests are conducted to monitor the frictional and flying characteristics of sliders.

  • PDF