• Title/Summary/Keyword: Head shape

Search Result 791, Processing Time 0.021 seconds

Numerical Study on the Effects of Pressure Wave Propagation for Tunnel Entrance Shape Change in High-Speed Railways (고속철도의 터널입구 형상변황에 따른 압력파동 현상에 관한 수치적 연구)

  • 목재균;백남욱;유재석;최윤호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.50-59
    • /
    • 1997
  • When a front head of train enters a tunnel at a high speed, compression wave is generated at tunnel entrance due to the confinement effect and propagated along the tunnel with sound of speed. The propagated compression wave is reflected at tunnel exit due to abrupt pressure change at passage. The reflected wave is expansion pressure wave. And when the rear head of train goes through the tunnel entrance, another expansion pressure wave is generated and propagated along the tunnel. The pressure drop occurs seriously around train when the two expansion pressure waves come cross on train in the tunnel. In order to reduce the pressure drop, the compression wave front must be controlled because the intensity and magnitude of pressure drop is nearly proportional to that of compression wave at tunnel entrance. This study relates to reduction of the pressure wave gradient with respect to tunnel entrance shape change with various kind of angle and rounding. The results show characteristics of wave propagation in tunnel, usefulness of characteristic curve to estimate proper time domain size in numerical study and measuring time in actual experiment. Also rounding is contributed to improve pressure wave front even if its radius is very small at tunnel entrance. In order to improve of pressure wave front at tunnel entrance, proper angle is prefered to rounding with big radius and an angle of around 14$^{\circ}$ is recommended according to this simulations, And it is expected to reduce additional pressure drop in tunnel when the location and the size of the internal space for attendant equipment are considered in advance.

  • PDF

Calculation of Jaws-only IMRT (JO-IMRT) dose distributions based on the AAPM TG-119 test cases using Monte Carlo simulation and Prowess Panther treatment planning system

  • Luong, Thi Oanh;Duong, Thanh Tai;Truong, Thi Hong Loan;Chow, James CL
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4098-4105
    • /
    • 2021
  • The aim of this study is to calculate the JO-IMRT dose distributions based on the AAPM TG-119 using Monte Carlo (MC) simulation and Prowess Panther treatment planning system (TPS) (Panther, Prowess Inc., Chico, CA). JO-IMRT dose distributions of AAPM TG-119 were calculated by the TPS and were recalculated by MC simulation. The DVHs and 3D gamma index using global methods implemented in the PTW-VeriSoft with 3%/3 mm were used for evaluation. JO-IMRT dose distributions calculated by TPS and MC were matched the TG-119 goals. The gamma index passing rates with 3%/3 mm were 98.7% for multi-target, 96.0% for mock prostate, 95.4% for mock head-and-neck, and 96.6% for C-shape. The dose in the planning target volumes (PTV) for TPS was larger than that for the MC. The relative dose differences in D99 between TPS and MC for multi-target are 1.52%, 0.17% and 1.40%, for the center, superior and inferior, respectively. The differences in D95 are 0.16% for C-shape; and 0.06% for mock prostate. Mock head-and-neck difference is 0.40% in D99. In contrast, the organ curve for TPS tended to be smaller than MC values. JO-IMRT dose distributions for the AAPM TG-119 calculated by the TPS agreed well with the MC.

A Study on Current Characteristics Based on Design and Performance Test of Current Generator of KRISO's Deep Ocean Engineering Basin

  • Kim, Jin Ha;Jung, Jae Sang;Hong, Seok Won;Lee, Chun Ju;Lee, Yong Guk;Park, Il Ryong;Song, In Haeng
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.446-456
    • /
    • 2021
  • To build an environment facility of a large-scale ocean basin, various detailed reviews are required, but it is difficult to find data that introduces the related research or construction processes on the environment facility. The current generator facility for offshore structure safety evaluation tests should be implemented by rotating the water of the basin. However, when the water in the large basin rotates, relatively large flow irregularities may occur and the uniformity may not be adequate. In this paper, design and review were conducted to satisfy the performance goals of the DOEB through computational numerical analysis on the shape of the waterway and the flow straightening devices to form the current in the large tank. Based on this, the head loss, which decreases the flow rate when the large tank water rotates through the water channel, was estimated and used as the pump capacity (impeller) design data. The impeller of the DOEB current generator was designed through computational numerical analysis (CFD) based on the lift surface theory from the axial-type impeller shape for satisfying the head loss of the waterway and maximum current velocity. In order to confirm the performance of the designed impeller system, the flow rate and flow velocity performance were checked through factory test operation. And, after installing DOEB, the current flow rate and velocity performance were reviewed compare with the original design target values. Finally, by measuring the current velocity of the test area in DOEB formed through the current generator, the spatial current distribution characteristics in the test area were analyzed. Through the analysis of the current distribution characteristics of the DOEB test area, it was confirmed that the realization of the maximum current velocity and the average flow velocity distribution, the main performance goals in the waterway design process, were satisfied.

Application study of silicon impression material for reducing metal artifacts: preliminary study for head and neck cancer radiotherapy

  • So Hyun Park;Jinhyun Choi;Byungdo Park;Jeongho Kim;Heesoo Lim;Dae-Hyun Kim
    • Journal of Medicine and Life Science
    • /
    • v.20 no.2
    • /
    • pp.83-88
    • /
    • 2023
  • Metal artifacts cause inaccuracies in target delineation, radiation treatment planning, and delivery when computed tomography images of a radiotherapy patient implanted with a high-density material in the body are acquired. In this study, we investigated the possibility of obtaining improved images in clinical trials through metal artifact reduction using silicon impression materials without the need for a specific metal artifact reduction algorithm. A silicon impression material exhibiting a constant Hounsfield unit (HU) value according to the mixing ratio of the catalysts and bases was selected. The material did not exhibit any change in weight or shape over time. For both the instances of inserting the metal material and applying the silicon impression material, the HU value and dose were compared with homogeneous cases filled with water-equivalent materials. When the silicon impression material was applied to the region where the high-density material was located, the HU value was within 5% and the dose was within 3% compared with those of the homogeneous cases. In this study, the silicon impression materials reduced metal artifacts. However, because the composition, shape, size, and location of high-density materials differ, further studies are required to consider these factors in clinical applications.

Study on Manufacturing Techniques and Conservation for Earthenware Horn Cups with a Horse Head Decoration(Treasure) (보물 도기 말머리장식 뿔잔의 제작 기법 연구와 보존처리)

  • KWON, Ohyoung;HAM, Chulhee;YU, Jia;KIM, Hanseul;PARK, Changyuel
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • Earthenware horn cups with horse head decorations were excavated from Tomb No. 7 of Bokcheon-dong, Dongraegu, Busan Metropolitan City. Made of earth in the shape of a horn, these cups are considered to have been used to drink alcohol or beverage. Large numbers of earthenware horn cups of various shapes were excavated from tombs located in the old territories of Silla and Gaya. A pair of earthenware horn cups were excavated from Tomb No. 7, and the two cups are almost identical in overall shapes and manufacturing techniques despite different sizes. Conservation treatment was carried out for the bigger one of the two horn cups this time. There are two cracks toward the horse head decorations around the mouth with missing parts observed. The chest of the horse touches the ground with one side decorating the horse head and the other side facing the conical mouth of the horn cup. It is in the U shape, striking a balance based on two legs attached behind. The surface of the horn cup was made with a potter's wheel, and the connection to the horse head has traces of cutting and trimming. The horse head is expressed realistically with its features including the ears, eyes, nose, and mouth well apprehended and its color is grey This study intended to investigate manufacturing techniques of the artifact by examining its internal structure through the condition survey in a non-destructive way. CT imaging was used to figure out its manufacturing techniques and to diagnose its condition, and accordingly the scientific conservation treatment was conducted to stabilize the artifact. The precise diagnosis on conservation condition found that there are two chips in the spout with their cracks extended. One of the chips is connected with separation added to the crack. The material which has been used for connection in the past was collected for the infrared spectroscopic analysis, which was identified to be nitrocellulose resin for the connection. Therefore, this conservation treatment focused on removing the old material and preventing the spread of cracks. Before conservation treatment, the condition survey and scientific examination for the artifact were carried out to secure data about the earthenware horn cup with horse head decorations(Treasure). Based on them, effective plans for its conservation treatment was sought for and then existing adhesive was safely removed, and restoration material was selected to take into account its reversibility. In addition, the conservation treatment according to optimal methodologies was conducted through the consultation meeting with experts.

Dosimetric comparison for Prostate VMAT of weight and photon energy change (전립선 암 입체적세기변조방사선치료 시 체형 및 에너지 변화에 따른 선량 평가)

  • Jo, Guang Sub;Kim, Min Woo;Baek, Min Gyu;Chae, Jong Pyo;Ha, Se Min;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.17-25
    • /
    • 2018
  • Purpose : To compare the radiation doses of prostate cancer patients according to changes in abdominal body shape and energy during Volumetric modulated arc therapy(VMAT). Materials and Methods : Seven patients with prostate cancer were enrolled in this study. VMAT treatment plan was established at 6, 10, and 15 MV while changing from -2.0 cm to 2 cm by 0.5 cm. Conformal index(CI), homogeneous index(HI), $D_{max}$, $D_{95%}$, $D_{50%}$ and $D_{2%}$ of PTV were examined in order to evaluate the change of dose in the target organ according to body shape change. Normal organ of the femoral head, rectum and bladder was analyzed to evaluate dose changes. Results : The dose of $D_{max}$ 6 MV in PTV increased to 107.2 % in 1.0 cm body shape reduction, and 10 MV and 15 MV dose increased to 107.1 % and 107.0 % in 1.5 cm body reduction, respectively. The dose of $D_{50%}$ 6 MV in PTV decreased to 99.64 % in 1.0 cm body shape increase, and in 10 MV and 15 MV dose decreased to 99.79 % and 99.97 % in 1.5 cm body increase, respectively. In 2.0 cm body type increase, the dose was decreased to 99.30 % and 99.52 %, respectively. Doses for rectum and bladder gradually increased with decreasing weight, and dose decreased with decreasing weight. 6 MV, and $V_{70Gy}$ at 10 MV increased from 11.50 % to 12.76 % when the external shape decreased by 2.0 cm. The bladder $V_{70Gy}$ also increased from 14.0 % to 15.2 %. It was also shown that the dose increased as the body weight decreased in the femoral head. Conclusion : In the treatment of VMAT, dose distribution can be changed according to the change of abdominal shape. SSD and CBCT were used to decrease the body shape by more than 1cm or more than 1.0 cm at 6 MV and the body shape by more than 1.5 cm or more than 1.5 cm at 10 MV or 15 MV. It is considered that a new treatment plan should be established through re-simulation.

  • PDF

Studies on the Fabrication of 0.2 ${\mu}m$Wide-Head T-Gate PHEMT′s (0.2 ${\mu}m$ Wide-Head T-Gate PHEMT 제작에 관한 연구)

  • Jeon, Byeong-Cheol;Yun, Yong-Sun;Park, Hyeon-Chang;Park, Hyeong-Mu;Lee, Jin-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.18-24
    • /
    • 2002
  • n this paper, we have fabricated pseudomorphic high electron mobility transistors (PHEMT) with a 0.2 ${\mu}{\textrm}{m}$ wide-head T-shaped gate using electron beam lithography by a dose split method. To make the T-shape gate with gate length of 0.2 ${\mu}{\textrm}{m}$ and gate head size of 1.3 ${\mu}{\textrm}{m}$ we have used triple layer resist structure of PMMA/P(MMA-MAA)/PMMA. The DC characteristics of PHEMT, which has 0.2 ${\mu}{\textrm}{m}$ of gate length, 80 ${\mu}{\textrm}{m}$ of unit gate width and 4 gate fingers, are drain current density of 323 ㎃/mm and maximum transconductance 232 mS/mm at $V_{gs}$ = -1.2V and $V_{ds}$ = 3V. The RF characteristics of the same device are 2.91㏈ of S21 gain and 11.42㏈ of MAG at 40GHz. The current gain cut-off frequency is 63GHz and maximum oscillation frequency is 150GHz, respectively.ively.

Comparison of morphometric traits between small yellow croaker (Larimichthys polyactis) and yellow croaker(L. crocea) (참조기(Larimichthys polyactis)와 부세(L. crocea) 간의 외부계측형질 비교)

  • Park, In-Seok;Oh, Ji Su
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.507-517
    • /
    • 2020
  • Several methods including morphometric analysis were used to distinguish small yellow croaker (Larimichthys polyactis) from yellow croaker (Larimichthys crocea), which have very similar external shapes. Morphometric analysis showed four considerable differences (p<0.05) among the total 48 morphometric dimensions, but no differences were seen in the classical dimensions (p>0.05). Rather, significant differences were seen in two truss dimensions: Insertion of dorsal fin base - origin of pectoral fin base and origin of anal fin base - origin of pectoral fin base, and two head part dimension: most anterior extension of the head - above of eye and above of eye - posterior aspect of operculum(p<0.05). However, the yellow croaker had higher values than the small yellow croaker in the other three morphometric dimensions except for the head part dimension of above of eye - posterior aspect of operculum of the four morphometric dimensions (p<0.05). The X-ray photographs indicated that the small yellow croaker (45.1±2.34°) had 8.4% more curved vertebral column than the yellow croaker(38.4±1.82°). A diamond-shaped cranium was found when the skin was peeled off from both fish but the commonly held fact that only the small yellow croaker has a diamond-shaped cranium is not accurate. Our results confirmed that the two fish could be definitely distinguished by their external body shape.

Optimal Design of the Fuel Storage Vessel of CNG Automobile by Considering Structural Efficiency (구조 효율을 고려한 CNG 자동차 연료저장용기의 최적설계)

  • Kim, Ho-Yoon;Bae, Won-Byong;Jang, Young-Jun;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.465-473
    • /
    • 2008
  • Type II compressed natural gas(CNG) storage vessels for automobiles have been acknowledged for their excellence and have recently become established in local regions. Their supply is not only to automakers in Korea such as Hyundai Motors but they are being increasingly exported. Although the available products have undergone safety evaluations and are certified by an authorized institution they are still short of the optimal design that is possible for such storage vessels. This research investigates the shape and thickness of the dome with the aim of optimizing the type II CNG storage vessels by using a finite element analysis technique. CNG storage vessels can be largely divided into 3 parts namely, the hear part, the cylinder part and the dome part. The head part is designed by means of a hot spinning process and this method is safer than that used in the design of the dome part even though its shape is similar. The thickness of the liners and reinforcing materials was optimized based on the requirements of the cylinder and dome parts. In addition, the shape of the dome, which is most suitable for Type II CNG storage vessels, is proposed by a process of review and analysis of various existing shape, and then conducting a structural stability evaluation to ensure the optimal design plan.

Numerical and Experimental Approach to Investigate Plane-view Shape and Crop Loss in Multistage Plate Rolling (다단 후판압연에서 평면형상 및 실수율 고찰을 위한 수치적, 실험적 연구)

  • Byon, Sang Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1117-1125
    • /
    • 2013
  • A finite element based approach that can be used to investigate the plane-view shape and crop loss of a material during plate rolling is presented. We employed a three-dimensional finite element model to continuously simulate the shape change of the head and tail of a plate as the number of rolling passes increases. The main feature of the proposed model lies in the fact that the multistage rolling can be simulated without a break because the rolling direction of the material is reversibly controlled as the roll gap sequentially decreases. The material constants required in the finite element analysis were experimentally obtained by hot tensile tests. We also performed a pilot hot plate rolling test to verify the usefulness of the proposed finite element model. Results reveal that the computed plane-view shapes as well as crop losses by the proposed finite element model were in good agreement with the measured ones. The crop losses predicted by the proposed model were within 5% of those measured from the pilot hot plate rolling test.