• Title/Summary/Keyword: Head rotation

Search Result 344, Processing Time 0.031 seconds

Development of the off-vertical rotatory chair and visual stimulation system for evaluation of the vestibular function (전정기능 평가를 위한 탈수직축 회전자극 시스템 및 HMD 시스템의 개발)

  • 김규겸;고종선;박병림;김인동
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.325-332
    • /
    • 2001
  • The vestibular system located in the inner ear controls reflex body posture and movement, It has the semicircular canals sensing an angular acceleration and the otolith organs sensing a linear acceleration. With this organic signal, medical doctor decide if a person has disease or not. To obtain this data, a precision stimular system is considered. Robust control is needed to obtain eye signals induced by off-vertical axis rotation because of an unbalanced load produced by tilting the axis of the system upto 30 degrees. In this study, off-vertical axis rotatory system with visual stimulation system are developed. This system is consisted of head mounted display for generating horizontal, vertical, and three dimensional stimulus patterns. Furthermore wireless recording system using RF modem is considered for noiseless data transmission. Detailed data was described.

  • PDF

Effect of Disease-Specific Exercise on Temporomandibular Joint Function and Neck Mobility in Temporomandibular Joint Dysfunction Associated With Ankylosing Spondylitis (강직성척추염과 관계된 측두하악관절장애에 대한 특수 운동치료의 효과)

  • Oh, Duck-Won;Jeon, Hye-Seon;Kwon, Oh-Yun;You, Sung-Hyun;Park, Si-Bok;Hwang, Kyung-Gyun
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • The aim of the study was to evaluate the effect of a disease-specific exercise (DSE) on temporomandibular joint (TMJ) function and neck mobility in TMJ dysfunction associated with ankylosing spondylitis (AS). Ten AS patients (seven males and three females) with TMJ dysfunction were recruited for this study. The DSE included exercises to correct head and neck posture and to improve the flexibility of the neck and TMJs. The patients attended treatment three times a week for 4 weeks, averaging 1 hour each session. Assessments were performed pretreatment, posttreatment, and 6 weeks after the completion of treatment. General physical status was assessed by four clinical measures (tragus-to-wall distance, modified Schober test, lumbar side flexion, and intermalleolar distance), the Bath ankylosing spondylitis function index (BASFI), and the Bath ankylosing spondylitis disease activity index. The main outcome measures included TMJ function (craniomandibular index (CMI)), and neck mobility (flexion, extension, rotation, and lateral rotation). None of the measures of general physical status, with the exception of BASFI, were significant1y different between the pretreatment, posttreatment, and 6-week follow-up (p>.05). However, CMI and all neck movements, except for extension, significant1y improved after the treatment (p<.05). These improvements were maintained during the follow-up period. The DSE used in the present study seems to be a clinical1y useful method for managing patients with symptoms from the stomatognathic system in AS. Further studies with more subjects and longer treatment times, including the follow-up period, will be conducted to validate these findings.

  • PDF

Biomechanical Comparative Study for Osteosynthesis of Pauwels Type III Femoral Neck Fractures: Conventional Devices versus Novel Fixed Angle Devices

  • Dae-Hyun Park;Young-Chae Seo;Yong-Uk Kwon;Soo-Hwan Jung;Seung-Jin Yoo
    • Hip & pelvis
    • /
    • v.34 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • Purpose: Osteosynthesis has been recommended for treatment of Pauwels type III femoral neck fractures in young patients. However, no implant of choice has been reported so far. This study was conducted in order to compare the fixation stability of two conventional fixation methods with three different novel fixed angle devices in this type of fracture. Materials and Methods: A total of 25 composite femurs (4th Generation Saw bone; Pacific Research Laboratories, USA) corresponding to human bone were used. Pauwels type III fracture type was uniformly reproduced. Specimens were fixed with a cannulated screw, cannulated screw with cable, and Intertan nail, dynamic hip screw, and IKEY nail. Measurement of failure loads and the rotational change of the femoral head fragment was performed for evaluation of fixation stability. Results: All implants were compared with cannulated screw and dynmaic hip screw. No meaningful improvement was observed for the cannulated screw with cable compared with the cannulated screw and dynamic hip screw. Meaningful improvement in load-to-failure and y-rotation and z-rotation was observed for both the Intertan nail and IKEY nail compared with the cannulated screw. However, compared with the dynamic hip screw, only the IKEY nail showed improvement in the same profile but the Intertan nail did not. Conclusion: Among novel fixed angle devices, meaningful improvement was observed for the IKEY nail compared with conventional implants. Strengths of this implant include biomechanical stability and simplicity of surgical technique, indicating that it may be another good option for osteosynthesis of Pauwels type III femoral neck fractures.

The Study of Grashey Method Viewing the Glenohumeral(shoulder) Joint (어깨관절의 접시오목을 나타내는 Grashey법에 대한 연구)

  • Lee, Jaeseob;Kim, Youngjae
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.331-335
    • /
    • 2015
  • Consideration of Glenohumeral joint's image with the Changed Body angle of the Glenohumeral joint's Oblique Position in Erect Position. Glenohumeral joint's of Grashey method is a shoulder oblique method available to view the shoulder joint. Grashey method projects AP view of the Glenohumeral joint's so that the Humerus head's subluxation or joint degeneration can be easily visualized. However in this view, the patients, erect position, have to keep their body obliquely. Oblique position is will be needed to get the good quality Glenohumeral joint's view. Therefore, we thought of examining a method which shows the Glenohumeral joint's well by angling the patient one side upward in erect position. For this study, total 20 subject with no history of neurological or psychiatric illness, were recruited for examinations. They consisted of 13 mails and 7 femails, Statistic group analysis was performed with ANOVA test. Score of the evaluation of the expects were $30^{\circ}$ at $0.40{\pm}0.499$, $35^{\circ}$ at $1.34{\pm}0.657$, $40^{\circ}$ at $1.84{\pm}0.573$, $45^{\circ}$ at $0.76{\pm}0.649$, and they were significant(P<0.05). The degree of $40^{\circ}$ views were shown to yield good quality shoulder oblique images.

Counter-Rotating Type Pumping Unit (Impeller Speeds in Smart Control)

  • Kanemoto, Toshiaki;Komaki, Keiichi;Katayama, Masaaki;Fujimura, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.334-340
    • /
    • 2011
  • Turbo-pumps have weak points, such as the pumping operation is unstable on the positive slope of the head curve and/or the cavitation occurs at the low suction head. To improve simultaneously both weak points, the first author invented the unique pumping unit composed of the tandem impellers and the peculiar motor with the double rotational armatures. The front and the rear impellers are driven by the inner and the outer armatures of the motor, respectively. Both impeller speeds are automatically and smartly adjusted in response to the pumping discharge, while the rotational torques between both impellers/armatures are counter-balanced. Such speeds contribute to suppress successfully not only the unstable operation at the low discharge but also the cavitation at the high discharge, as verified with the axial flow type pumping unit in the previous paper. Continuously, this paper investigates experimentally the effects of the tandem impeller profiles on the pump performances and the rotational speeds against the discharge, using the impellers whose loads are low and/or high at the normal discharge. The worthy remarks are that (a) the unstable operation is suppressed as expected and the shut off power is scarcely large in the smart control, (b) the blade profile contributes to determine the discharge giving the maximum/minimum rotational speed where the reverse flow may incipiently appears at the front impeller inlet, (c) the tandem impeller profiles scarcely affect the rotational speeds, while the loads of the front and the rear impellers are same, but (d) the impeller with the low load must run faster and the impeller with the high load must run slower at the same discharge to take the same rotational torque, and (e) the reverse flow at the inlet and the swirling velocity component at the outlet of the front impeller with the high load require making the rotational speed of the rear impeller with low load fairly faster at the lower discharge.

NUMERICAL STUDY OF A CENTRIFUGAL PUMP PERFORMANCE WITH VARIOUS VOLUTE SHAPE (볼루트의 형상 변화가 원심펌프 성능에 미치는 영향에 대한 수치해석)

  • Lee, J.H.;Hur, N.;Yoon, I.S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.35-40
    • /
    • 2015
  • Centrifugal pumps consume considerable amounts of energy in various industrial applications. Therefore, improving the efficiency of pumps machine is a crucial challenge in industrial world. This paper presents numerical investigation of flow characteristics in volutes of centrifugal pumps in order to compare the energy consumption. A wide range of volumetric flow rate has been investigated for each case. The standard k-${\varepsilon}$ is adopted as the turbulence model. The impeller rotation is simulated employing the Multi Reference Frames(MRF) method. First, two different conventional design methods, i.e., the constant angular momentum(CAM) and the constant mean velocity (CMV) are studied and compared to a baseline volute model. The CAM volute profile is a logarithmic spiral. The CMV volute profile shape is an Archimedes spiral curve. The modified volute models show lower head value than baseline volute model, but in case of efficiency graph, CAM curve has higher values than others. Finally for this part, CAM curve is selected to be used in the simulation of different cross-section shape. Two different types of cross-section are generated. One is a simple rectangular shape, and the other one is fan shape. In terms of different cross-section shape, simple rectangular geometry generated higher head and efficiency. Overall, simulation results showed that the volute designed using constant angular momentum(CAM) method has higher characteristic performances than one by CMV volute.

An Energy Efficient Cluster-Based Local Multi-hop Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 클러스터 기반 지역 멀티홉 라우팅 프로토콜)

  • Kim, Kyung-Tae;Youn, Hee-Yong
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.495-504
    • /
    • 2009
  • Wireless sensor networks (WSN) consisting of a largenumber of sensors aims to gather data in a variety of environments and is beingused and applied in many different fields. The sensor nodes composing a sensornetwork operate on battery of limited power and as a result, high energyefficiency and long network lifetime are major goals of research in the WSN. Inthis paper we propose a novel cluster-based local multi-hop routing protocolthat enhances the overall energy efficiency and guarantees reliability in thesystem. The proposed protocol minimizes energy consumption for datatransmission among sensor nodes by forming a multi-hop in the cluster.Moreover, through local cluster head rotation scheme, it efficiently manageswaste of energy caused by frequent formation of clusters which was an issue inthe existing methods. Simulation results show that our scheme enhances energyefficiency and ensure longer network time in the sensor network as comparedwith existing schemes such as LEACH, LEACH-C and PEACH.

Effects of Therapeutic Exercise on Posture, Pain and Asymmetric Muscle Activity in a Patient with Forward Head Posture: case report (치료적운동이 전방두부자세 환자의 자세, 통증 및 비대칭적 근육활성에 미치는 영향: 증례보고)

  • Yoo, Kyung-Tae;Lee, Ho-Seong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.1
    • /
    • pp.71-82
    • /
    • 2016
  • PURPOSE: The purpose of this case report was to determine the effect of therapeutic exercise on posture, pain, and muscle activity in two patients with forward head posture (FHP). METHODS: A-31-year-old male (patient A) and a 19-year-old women (patient B) presented with FHP, neck pain, and headache. The therapeutic exercise program consisted of cervical mobilization, deep cervical flexors strengthening, and cervical extensors stretching, for 40 min/d, 2 d/week, for 8 weeks. Neck pain (VAS), neck disability (NDI), cervical range of motion (CROM), lateral view of cervical spine X-ray (indicating the FHP), and asymmetrical neck and shoulder muscular activity ratio were measured before, after 4 weeks, and after 8 weeks of corrective exercise. RESULTS: VAS and NDI decreased in patients A and B after exercise compared to before the program. CROM increased in patients A and B at flexion, extension, side bending, and rotation after exercise compared to before the program. FHP decreased in patients A and B at distance after exercise compared to before the program. In addition, asymmetrical neck and shoulder muscles activity ratio improved in patients A and B after exercise compared to before the program. CONCLUSION: We demonstrated in a case report that therapeutic exercise increases ROM, decreases pain and disability of neck, FHP, and asymmetry muscle activity ratio in patients with FHP. These finding have clinical implications for therapeutic exercise in patients with FHP.

Effect of Friction on the Hysteresis of the Thrust Forces Acting on Auto Leveling Devices in Vehicle Head Lamps (헤드 램프 빛의 각도 자동 조절 장치에 작용하는 추력의 히스테리시스에 대한 마찰의 영향)

  • Baek, Hong;Kim, Jae-Hoon;Nam, Jin-Sik;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.369-375
    • /
    • 2019
  • This paper presents a new method on how to calculate the thrust forces acting on an auto-leveling device in headlamps for passenger vehicles. The leveling device is used to lower the angle of lights when a load in the trunk of the vehicle lifts it. In the process of the headlamp design, it is imperative to predict the external forces so that the designers can decide whether to proceed or not. The device is composed of three pivot joints with no reaction moment, a plate that holds the lamp, and a leveling motor that changes rotation to linear motion. In this study, force balance, moment balance, and geometric compatibility are applied to the leveling device system so that a nonlinear system of equations can be derived; the multi-dimensional Newton-Raphson algorithm is then used to solve these. A sensitivity analysis is carried out to verify which design variables affect the system the most: the mass of the lamp and the height between the pivot and leveling device affect the thrust forces the most. Then, considering the friction forces between the moving parts, the hysteresis of the forces are derived. An experimental apparatus, designed and developed in this study, is used to verify the exactness of the derived equations. The results from experiments coincide well with the calculated results. The friction hysteresis, in particular, proves this upon analysis.

The Study for the CMP Automation with Nova Measurement System (NOVA System을 이용한 CMP Automation에 관한 연구)

  • Kim, Sang-Yong;Chung, Hun-Sang;Park, Min-Woo;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.176-180
    • /
    • 2001
  • There are several factors causing re-work in CMP process such as improper polish time calculation by operator. removal rate decline of the polisher, unstable in-suit pad conditioning, slurry supply module problem and wafer carrier rotation inconsistancy. And conclusively those fundimental reason for the re-work rate increasement is mainly from the cycle time delay between wafer polish and post measurement. Therefore, Wafer thickness measurement in wet condition could be able to remove those improper process conditions which may happen during the process in comparison with the conventional dried wafer measurement system and it can be able to reduce the CMP process cycle time. CMP scrap reduction by overpolish, re-work rate reduction, thickness control efficiency also can be easily achieved. CMP Equipment manufacturer also trying to develop integrated system which has multi-head & platen, cleaner, pre & post thickness measure and even control the polish time from the calculated removal rate of each polishing head by software. CMP re-work problem such as over & under polish by target thickness may result in the cycle time delay. By reducing those inefficient factors during the process and establish of the automatic process control, CLC system need to be adopted to maximize the process performance. Wafer to Wafer Polish Time Feed Back Control by measuring the wafer right after the polish shorten the polish time calculation for the next wafer and it lead to the perfact Post CMP target thickness control capability. By Monitoring all of the processed the wafer, CMP process will also be stabilize itself.

  • PDF