• Title/Summary/Keyword: Head rotation

Search Result 342, Processing Time 0.038 seconds

Influence of Head-Neck Rotation on Static Elbow Extension Force in Patients with Hemiparesis (머리-목 회전이 편부전마비 환자의 팔꿈치 신전근력에 미치는 영향)

  • Yoo, Wook-Jae;Lee, Sang-Eun;Lee, Jeong-Weon
    • Physical Therapy Korea
    • /
    • v.4 no.1
    • /
    • pp.39-47
    • /
    • 1997
  • The purpose of this investigation was to examine the influence of head and neck(HN) position in the transverse plane on the static production of elbow extension force in the involved(paretic) upper extremity of patients with hemiparesis. On this study, thirty patients who had experienced a cerebrovascular accident were matched with neurologically intact subjects. Force of static elbow extension was tested with a hand-held dynamometer, twice with the HN rotated toward the paretic side and twice with the HN rotated toward the non-paretic side. Elbow extension force differed significantly with the HN in the two position in patients with hemiparesis but not in normal persons(${\alpha}$=0.05). Results of this study support the conclusion that HN position in the transverse plane influences the production of static elbow extension force on the paretic side in patients with hemiparesis.

  • PDF

Cervical Spine Malformations Associated With a 5q34-5q35.2 Micro-interstitial Deletion: A Case Report

  • Lee, Heewon;Kim, Joon Sung;Lim, Seong Hoon;Sul, Bomi;Hong, Bo Young
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.884-887
    • /
    • 2018
  • We report a female proband carrying a de novo 5q34-q35.2 deletion breakpoint, and review the unique skeletal phenotype and possible genotype related to this mutation. The patient presented with a persistent head tilt and limited head rotation. Non-contrast-enhanced three-dimensional computed tomography of the cervical spine revealed several malformations including a bone cleft in the right pars interarticularis, a bone defect in both C5 lamina and the transverse foramen at C2-C3, agenesis of the right articular process of C5, bony fusion of C4-C5, and subluxation of the craniocervical joints. Several deformities of the cervical spine seen in this patient have not been associated with the 5q deletion. A review of 5q-related mutations suggests that abnormalities associated with MSX2 gene might cause cervical spine abnormalities.

The Development of a Haptic Interface for Interacting with BIM Elements in Mixed Reality

  • Cho, Jaehong;Kim, Sehun;Kim, Namyoung;Kim, Sungpyo;Park, Chaehyeon;Lim, Jiseon;Kang, Sanghyeok
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1179-1186
    • /
    • 2022
  • Building Information Modeling (BIM) is widely used to efficiently share, utilize and manage information generated in every phase of a construction project. Recently, mixed reality (MR) technologies have been introduced to more effectively utilize BIM elements. This study deals with the haptic interactions between humans and BIM elements in MR to improve BIM usability. As the first step in interacting with virtual objects in mixed reality, we challenged moving a virtual object to the desired location using finger-pointing. This paper presents the procedure of developing a haptic interface system where users can interact with a BIM object to move it to the desired location in MR. The interface system consists of an MR-based head-mounted display (HMD) and a mobile application developed using Unity 3D. This study defined two segments to compute the scale factor and rotation angle of the virtual object to be moved. As a result of testing a cuboid, the user can successfully move it to the desired location. The developed MR-based haptic interface can be used for aligning BIM elements overlaid in the real world at the construction site.

  • PDF

Effects of energy level, reconstruction kernel, and tube rotation time on Hounsfield units of hydroxyapatite in virtual monochromatic images obtained with dual-energy CT

  • Jeong, Dae-Kyo;Lee, Sam-Sun;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.49 no.4
    • /
    • pp.273-279
    • /
    • 2019
  • Purpose: This study was performed to investigate the effects of energy level, reconstruction kernel, and tube rotation time on Hounsfield unit (HU) values of hydroxyapatite (HA) in virtual monochromatic images (VMIs) obtained with dual-energy computed tomography (DECT)(Siemens Healthineers, Erlangen, Germany). Materials and Methods: A bone density calibration phantom with 3 HA inserts of different densities(CTWATER®; 0, 100, and 200 mg of HA/㎤) was scanned using a twin-beam DECT scanner at 120 kVp with tube rotation times of 0.5 and 1.0 seconds. The VMIs were reconstructed by changing the energy level (with options of 40 keV, 70 keV, and 140 keV). In order to investigate the impact of the reconstruction kernel, virtual monochromatic images were reconstructed after changing the kernel from body regular 40 (Br40) to head regular 40 (Hr40) in the reconstruction phase. The mean HU value was measured by placing a circular region of interests (ROIs) in the middle of each insert obtained from the VMIs. The HU values were compared with regard to energy level, reconstruction kernel, and tube rotation time. Results: Hydroxyapatite density was strongly correlated with HU values(correlation coefficient=0.678, P<0.05). For the HA 100 and 200 inserts, HU decreased significantly at increased energy levels(correlation coefficient= -0.538, P<0.05) but increased by 70 HU when using Hr40 rather than Br40 (correlation coefficient=0.158, P<0.05). The tube rotation time did not significantly affect the HU(P>0.05). Conclusion: The HU values of hydroxyapatite were strongly correlated with hydroxyapatite density and energy level in VMIs obtained with DECT.

The Results of Various Vestibular Function Tests in Young Male Adult (장정에 시행한 몇가지 평가기능 검사성적에 대한 고찰)

  • 박찬일;추광철;노관택
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.2.3-2
    • /
    • 1972
  • The vestibular function test reveals the objective findings of the impairment of the vestibular labyrinth. It's purpose is based on the analysis of the findings and detect the location and etiology of the labyrinthine impairment. In the vestibular function test, the vestibulo-spinal reflex has the clinical significance upon the tonus of the striated muscles by the labyrithine stimulation and contribute to regulating the posture and the position, at rest as well as in motion. The vestibulo-spinal reflex must performe as one of the routine vestivular function test because it can be evoked in man by such weak stimuli to the labyrinth as cannot induce vestibulo-ocular reflex. Authors performed the vestibular function test such as one leg test, gait test, stepping test and vertical writing test to one hundred of healthy and young male adult and received the following results. Results 1. One leg test: In 30 seconds, the frequency of dropping the leg on the ground was between 0 to 3 times in Rt., and 0 to 5 times in Lt. The mean frequency was 0.48 times in Rt., and 0.68 times in Lt. 2. Gait test: In forward gait; the range of the deviation was distributed 0 to 100 cm and mean range was 22.5cm to the Rt., 26.1cm to the Lt. In backward gait; the range deviation was distributed 0 to 140cm and mean range was 35.4cm to the Rt., 33.0cm to the Lt. 3. Stepping test: In normal head position; forward movement war 93% and backward 5%. The angle of displacement deviated to the Rt. side in 36%, and Lt. in 50%. The angle of rotation deviated to the Rt. side in 53 %, and Lt. in 36%. The mean values: angle of displacement was 22.05 degrees, angle of rotation was 24.40 degrees, distance of displacement was 48.95cm. In backward head position; Forward movement was 94% and backward was 3%. The angle of displacement deviated in 34%, and Rt. in 55%, to the Rt. side The angle of rotation deviated to the Rt. side in 50%, and Lt. in 42%. The mean values; angle of displacement was 29.72 degrees, angle of rotation was 39.53 degrees, distance of displacement was 44.17cm. 44.17cm. 4. Vertical writing test: The angle of deviation was between 0 to 16 degrees in all cases, and was between 0 to 12 degrees in the cases of normal head position. The mean angle of deviation was between 4.15 to 5.76 degrees on each side. The direction of deviation to the Rt. side was 54~69%, Lt. was 25~40% and 3~7% was vertical without deviation.

  • PDF

Development of Geometric Calibration Method for Triple Head Pinhole SPECT System (삼중헤드 SPECT에서 기하학적 보정 기법의 개발)

  • Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Won-Woo;Park, So-Yeon;Son, Ji-Yeon;Kim, Yu-Kyeong;Kim, Sang-Eun;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Purpose: Micro-pinhole SPECT system with conventional multiple-head gamma cameras has the advantage of high magnification factor for imaging of rodents. However, several geometric factors should be calibrated to obtain the SPECT image with good image quality. We developed a simplified geometric calibration method for rotating triple-head pinhole SPECT system and assessed the effects of the calibration using several phantom and rodent imaging studies. Materials and Methods: Trionix Triad XLT9 triple-head SPECT scanner with 1.0 mm pinhole apertures were used for the experiments. Approximately centered point source was scanned to track the angle-dependent positioning errors. The centroid of point source was determined by the center of mass calculation. Axially departed two point sources were scanned to calibrate radius of rotation from pinhole to center of rotation. To verify the improvements by the geometric calibration, we compared the spatial resolution of the reconstructed image of Tc-99m point source with and without the calibration. SPECT image of micro performance phantom with hot rod inserts was acquired and several animal imaging studies were performed. Results: Exact sphere shape of the point source was obtained by applying the calibration and axial resolution was improved. Lesion detectibility and image quality was also much improved by the calibration in the phantom and animal studies. Conclusion: Serious degradation of micro-pinhole SPECT images due to the geometric errors could be corrected using a simplified calibration method using only one or two point sources.

Correlation of Hip Joint Range of Motion and Femur Head Anterior Glide Mobility with Gait Ability in Stroke Patients (뇌졸중 환자의 고관절 관절가동범위와 대퇴골두 전방가동성, 보행 능력간에 상관관계)

  • Kim, Young-Hoon;Kim, Suhn-Yeop;Jang, Hyun-Jung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.1
    • /
    • pp.35-44
    • /
    • 2014
  • PURPOSE: The aim of the study was to investigate the relationships among the hip joint passive range of motion (ROM) and femur head anterior glide (FHAG) mobility on the gait ability in patients with post-stroke hemiparesis. METHODS: The participants were 37 patients (30 male, 7 female) living in Daejeon. The ROM of the hip joint was measured by using goniometry and the FHAG mobility was measured by using the Prone Figure-4 test. The walking ability was assessed by using the 10m walk test (10MWT), and the 6-min walk test (6MWT). RESULTS: The FHAG was negatively correlated with hip extension (r=-.554, p<.05) and flexion (r=-.337) on the affected side as well as with hip extension (r=-.480), abduction (r=-.361), and adduction (r=-.426) on the non-affected side (p<.05). The gait ability was correlated with the hip joint external rotation on the non-affected side (p<.05), but showed no significant correlation with the hip ROM on the affected side (p>.05). CONCLUSION: This study provides evidence that in patients with post-stroke hemiparesis, the FHAG mobility might be correlated with hip extension. Based on these results, the FHAG mobility may be used to determine the hip extension in patients with post-stroke hemiparesis.

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.

Movement Patterns for Lying from Erect Stance to Supine Position of Healthy Adults and Hemiplegia Patients Aged from 50 to 70 (일반인과 뇌졸중 편마비 환자의 연령별 선 자세에서 눕기 시 동작유형의 비교)

  • Jeon, Chun-Bae;Kim, Sang-Jin;Kim, Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.5
    • /
    • pp.7-14
    • /
    • 2011
  • Purpose: The purpose of this study was to describe the movement patterns when lying from an erect stance to a supine position of healthy adults and hemiplegia patients in the age group from 50 to 70. Methods: The subjects used in this study were 230 patients (144 healthy adults and 86 hemiplegia patients). Movement patterns were classified using categorical descriptions of the action of three body regions: the upper extremity, lower extremity, and the head-trunk region. Results: In the most common supine lying position in healthy adults (29.7%), the female fifties age group performed a symmetrical pattern using the upper extremity region, a symmetrical squat pattern using the lower extremity region, and a symmetrical pattern using the head-trunk region (1-1-1). However, in the most supine lying position in hemiplegia patients (32.0%), the female sixties age group usually performed this pattern by using the upper extremity and lower extremity regions in a squat position by raising the leg, and performing rotation of the head-trunk region (3-4-3). Conclusion: Using this clinical therapy, and considering the patients ability to exercise when lying from an erect stance to a supine position, the proper care could be provided. Moreover, this therapy introduces action based on a variety of training methods and on the effects which might result from any changes.

Effects of Sling Exercise Program on Muscle Activity and Cervical Spine Curvature of Forward Head Posture (슬링 운동 프로그램이 머리전방자세의 근 활성도와 목뼈 배열에 미치는 영향)

  • Kim, Eun-Ju;Kim, Ji-Won;Park, Byung-Rae
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.213-220
    • /
    • 2011
  • The purpose of the study was to evaluate the effects of sling exercise program on muscle activity and cervical spine curvature of person with forward head posture. The subjects, 25 students, were divided into two groups. This experiment was intended to examine the muscle activity and cervical spine curvature while the subjects had performed the exercises to do for 2 times/week and 4 weeks. The factors of FHP were measured cranial vertical angle, cranial rotation angle, muscular activity and cervical spine curvature. Cervical spine curvature measured craniovertical, craniocervical, cervicohorizontal and upper cervical angle. Collected data were statistically analyzed by SPSS 10.0. After experiment for 4 weeks period, results were as following: Both group was significant difference of the results according to the CVA. Exercise group are more effective to increase muscle activity (p<.05), but cervical spine curvature was no significant difference. This result, we could find out there was a significant correlation between sling exercise and muscle activity, CVA and CRA.