• 제목/요약/키워드: Head Pose Estimation

검색결과 42건 처리시간 0.029초

운전자 피로 감지를 위한 얼굴 동작 인식 (Facial Behavior Recognition for Driver's Fatigue Detection)

  • 박호식;배철수
    • 한국통신학회논문지
    • /
    • 제35권9C호
    • /
    • pp.756-760
    • /
    • 2010
  • 본 논문에서는 운전자 피로 감지를 위한 얼굴 동작을 효과적으로 인식하는 방법을 제안하고자 한다. 얼굴 동작은 얼굴 표정, 얼굴 자세, 시선, 주름 같은 얼굴 특징으로 나타난다. 그러나 얼굴 특징으로 하나의 동작 상태를 뚜렷이 구분한다는 것은 대단히 어려운 문제이다. 왜냐하면 사람의 동작은 복합적이며 그 동작을 표현하는 얼굴은 충분한 정보를 제공하기에는 모호성을 갖기 때문이다. 제안된 얼굴 동작 인식 시스템은 먼저 적외선 카메라로 눈 검출, 머리 방향 추정, 머리 움직임 추정, 얼굴 추적과 주름 검출과 같은 얼굴 특징 등을 감지하고 획득한 특징을 FACS의 AU로 나타낸다. 획득한 AU를 근간으로 동적 베이지안 네트워크를 통하여 각 상태가 일어날 확률을 추론한다.

방향성 2차원 타원형 필터를 이용한 스테레오 기반 포즈에 강인한 사람 검출 (Stereo-based Robust Human Detection on Pose Variation Using Multiple Oriented 2D Elliptical Filters)

  • 조상호;김태완;김대진
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권10호
    • /
    • pp.600-607
    • /
    • 2008
  • 이 논문은 방향성 2차원 타원형 필터(Multiple Oriented 2D Elliptical Filters;MO2DEFs)를 사용하여 스테레오 영상으로부터 포즈에 강인한 사람 검출을 제안한다. 기존의 물체 지향 크기 적응 필터(Object Oriented Scale Adaptive Filter;OOSAF)는 정면을 보고 있는 사람만을 검출하는 단점을 지니고 있는데 반해 제안한 방향성 2차원 타원형 필터는 사람의 크기나 포즈에 관계없이 사람을 검출하고 추적한다. 2D 공간-깊이 히스토그램에 특정 각도로 향하는 4개의 2차원 타원형 필터들을 적용하고, 필터링 된 히스토그램에서 임계값을 통해서 사람을 검출한 다음, MO2D2EFs 중 승적 결과가 가장 큰 2차원 타원형 필터의 방향을 사람의 방향으로 판단한다. 사람 후보들은 얼굴을 검출하거나 검출된 사람의 선택된 방향의 머리-어께 형태를 정합함으로서 검증한다. 실험 결과는 (1) 포즈 각도 예측의 정확도는 약 88%이고, (2) 제안한 MO2DEFs를 사용한 사람 검출의 성능이 OOSAF를 사용한 사람 검출의 성능보다 $15{\sim}20%$만큼 향상되었으며, 특히 정면이 아닌 사람의 경우에 더 향상이 있었다.

오류-역전파 신경망 기반의 얼굴 검출 및 포즈 추정 (Back-Propagation Neural Network Based Face Detection and Pose Estimation)

  • 이재훈;전인자;이정훈;이필규
    • 정보처리학회논문지B
    • /
    • 제9B권6호
    • /
    • pp.853-862
    • /
    • 2002
  • 얼굴 검출은 디지털화 된 임의의 정지 영상 혹은 연속된 영상으로부터 얼굴 존재유무를 판단하고, 얼굴이 존재할 경우 영상 내 얼굴의 위치, 방향, 크기 등을 알아내는 기술로 정의된다. 이러한 얼굴 검출은 얼굴 인식이나 표정인식, 헤드 제스쳐 등의 기초 기술로서해당 시스템의 성능에 매우 중요한 변수 중에 하나이다. 그러나 영상 내의 얼굴은 표정, 포즈, 크기, 빛의 방향 및 밝기, 안경, 수염 등의 환경적 변화로 인해 얼굴 모양이 다양해지므로 정확하고 빠른 검출이 어렵다. 따라서 본 논문에서는 오류-역전파 신경망을 사용하여 몇가지 환경적 조건을 극복한 정확하고 빠른 얼굴 검출 방법을 제안한다. 제안된 방법은 표정과 포즈, 배경에 무관하게 얼굴을 검출하면서도 빠른 검출이 가능하다. 이를 위해 신경망을 이용하여 얼굴 검출을 수행하고, 검색 영역의 축소와 신경망 계산 시간의 단축으로 검출 응답 시간을 빠르게 하였다. 검색 영역의 축소는 영상 내 피부색 영역의 분할과 차영상을 이용하였고, 주성분 분석을 통해 신경망의 입력 백터를 축소시킴으로써 신경망 수행 시간과 학습 시간을 단축시켰다. 또, 추출된 얼굴 영상에서 포즈를 추정하고 눈 영역을 검출함으로써 얼굴 정보의 사용에 있어 보다 많은 정보를 추출할 수 있도록 하였다. 얼굴 검출 실험은 마할라노비스 거리를 사용하여 검출된 영상의 얼굴 여부를 판정하고, 성공률과 시간을 측정하였다. 정지 영상과 동영상에서 모두 실험하였으며, 피부색 영역의 분할을 사용할 경우 입력 영상의 칼라 설정의 유무에 다른 검출 성공률의 차를 보였다. 포즈 실험도 같은 조건에서 수행되었으며, 눈 영역의 검출은 안경의 유무에 다른 실험 결과를 보였다. 실험 결과 실시간 시스템에 사용 가능한 수준의 검색률과 검색 시간을 보였다.

SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적 (Robust AAM-based Face Tracking with Occlusion Using SIFT Features)

  • 엄성은;장준수
    • 정보처리학회논문지B
    • /
    • 제17B권5호
    • /
    • pp.355-362
    • /
    • 2010
  • 얼굴추적은 3차원 공간상에서 머리(head)와 안면(face)의 움직임을 추정하는 기술로, 얼굴 표정 감정인식과 같은 상위 분석단계의 중요한 기반기술이다. 본 논문에서는 AAM 기반의 얼굴추적 알고리즘을 제안한다. AAM은 변형되는 대상을 분할하고 추적하는데 광범위하게 적용되고 있다. 그러나 여전히 여러 가지 해결해야할 제약사항들이 있다. 특히 자체중첩(self-occlusion)과 부분적인 중첩, 그리고 일시적으로 완전히 가려지는 완전중첩 상황에서 보통 국부해에 수렴(local convergence)하거나 발산하기 쉽다. 본 논문에서는 이러한 중첩상황에 대한 AAM의 강인성을 향상시키기 위해서 SIFT 특징을 이용하고 있다. SIFT는 일부 영상의 특징점으로 안정적인 추적이 가능하기 때문에 자체와 부분중첩에 효과적이며, 완전중첩의 상황에도 SIFT의 전역적인 매칭성능으로 별도의 재초기화 없이 연속적인 추적이 가능하다. 또한 추적과정에서 큰 자세변화에 따른 움직임을 효과적으로 추정하기 위해서 다시점(multi-view) 얼굴영상의 SIFT 특징을 온라인으로 등록하여 활용하고 있다. 제안한 알고리즘의 이러한 강인성은 위 세 가지 중첩상황에 대해서 기존 알고리즘들과의 비교실험을 통해서 보여준다.

지능형 헬멧시현시스템 설계 및 시험평가 (Design and Evaluation of Intelligent Helmet Display System)

  • 황상현
    • 한국항공우주학회지
    • /
    • 제45권5호
    • /
    • pp.417-428
    • /
    • 2017
  • 본 논문에서는 항공기 조종사 지능형 헬멧시현시스템(IHDS, Intelligent Helmet Display System)의 아키텍쳐 설계, 단위 구성품 설계, 핵심 소프트웨어 설계내용(헬멧 자세추적, 고도오차 보정 소프트웨어)을 기술하며, 단위시험 및 통합시험에 대한 결과를 기술한다. 세계적인 최신 헬멧시현시스템 개발 추세를 반영하여 3차원 전자지도 시현, FLIR(Forward Looking Infra-Red) 영상시현, 하이브리드형 헬멧자세추적, 바이저 반사형광학계, 야시카메라 영상시현 및 경량 복합소재 헬멧쉘 등의 사양을 설계에 적용하였다. 특히 3차원 전자지도 데이터의 고도오차 자동보정 기법, 고정밀 영상정합 기법, 다색(Multi-color) 조명광학계, 회절소자를 이용한 투과형 영상발광면, 헬멧자세 추정시간을 최소화하는 추적용 카메라, 장/탈착형 야시카메라, 머리 밀착용 에어포켓 등의 신개념의 설계를 제안하였다. 모든 시스템 구성품의 시제작을 완료한 후 단위시험과 시스템 통합시험을 수행하여 기능과 성능을 검증하였다.

실시간 목 자세 모니터링을 위한 웨어러블 센서를 이용한 두개척추각 추정 (The Estimation of Craniovertebral Angle using Wearable Sensor for Monitoring of Neck Posture in Real-Time)

  • 이재현;지영준
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권6호
    • /
    • pp.278-283
    • /
    • 2018
  • Nowdays, many people suffer from the neck pain due to forward head posture(FHP) and text neck(TN). To assess the severity of the FHP and TN the craniovertebral angle(CVA) is used in clinincs. However, it is difficult to monitor the neck posture using the CVA in daily life. We propose a new method using the cervical flexion angle(CFA) obtained from a wearable sensor to monitor neck posture in daily life. 15 participants were requested to pose FHP and TN. The CFA from the wearable sensor was compared with the CVA observed from a 3D motion camera system to analyze their correlation. The determination coefficients between CFA and CVA were 0.80 in TN and 0.57 in FHP, and 0.69 in TN and FHP. From the monitoring the neck posture while using laptop computer for 20 minutes, this wearable sensor can estimate the CVA with the mean squared error of 2.1 degree.

Facial Feature Extraction with Its Applications

  • Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • 제2권1호
    • /
    • pp.7-9
    • /
    • 2015
  • Purpose In the many face-related application such as head pose estimation, 3D face modeling, facial appearance manipulation, the robust and fast facial feature extraction is necessary. We present the facial feature extraction method based on shape regression and feature selection for real-time facial feature extraction. Materials and Methods The facial features are initialized by statistical shape model and then the shape of facial features are deformed iteratively according to the texture pattern which is selected on the feature pool. Results We obtain fast and robust facial feature extraction result with error less than 4% and processing time less than 12 ms. The alignment error is measured by average of ratio of pixel difference to inter-ocular distance. Conclusion The accuracy and processing time of the method is enough to apply facial feature based application and can be used on the face beautification or 3D face modeling.

천장 조명을 이용한 점 패턴 매칭 기반의 광역적인 위치 추정 (Point Pattern Matching Based Global Localization using Ceiling Vision)

  • 강민태;성창훈;노현철;정명진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1934-1935
    • /
    • 2011
  • In order for a service robot to perform several tasks, basically autonomous navigation technique such as localization, mapping, and path planning is required. The localization (estimation robot's pose) is fundamental ability for service robot to navigate autonomously. In this paper, we propose a new system for point pattern matching based visual global localization using spot lightings in ceiling. The proposed algorithm us suitable for system that demands high accuracy and fast update rate such a guide robot in the exhibition. A single camera looking upward direction (called ceiling vision system) is mounted on the head of the mobile robot and image features such as lightings are detected and tracked through the image sequence. For detecting more spot lightings, we choose wide FOV lens, and inevitably there is serious image distortion. But by applying correction calculation only for the position of spot lightings not whole image pixels, we can decrease the processing time. And then using point pattern matching and least square estimation, finally we can get the precise position and orientation of the mobile robot. Experimental results demonstrate the accuracy and update rate of the proposed algorithm in real environments.

  • PDF

PoseNet과 GRU를 이용한 Skeleton Keypoints 기반 낙상 감지 (Human Skeleton Keypoints based Fall Detection using GRU)

  • 강윤규;강희용;원달수
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.127-133
    • /
    • 2021
  • 낙상 판단을 위한 최근 발표되는 연구는 RNN(Recurrent Neural Network)을 이용한 낙상 동작 특징 분석과 동작 분류에 집중되어 있다. 웨어러블 센서를 기반으로 한 접근 방식은 높은 탐지율을 제공하나 사용자의 착용 불편으로 보편화 되지 못했고 최근 영상이나 이미지 기반에 딥러닝 접근방식을 이용한 낙상 감지방법이 소개 되었다. 본 논문은 2D RGB 저가 카메라에서 얻은 영상을 PoseNet을 이용해 추출한 인체 골격 키포인트(Keypoints) 정보로 머리와 어깨의 키포인트들의 위치와 위치 변화 가속도를 추정함으로써 낙상 판단의 정확도를 높이기 위한 감지 방법을 연구하였다. 특히 낙상 후 자세 특징 추출을 기반으로 Convolutional Neural Networks 중 Gated Recurrent Unit 기법을 사용하는 비전 기반 낙상 감지 솔루션을 제안한다. 인체 골격 특징 추출을 위해 공개 데이터 세트를 사용하였고, 동작분류 정확도를 높이는 기법으로 코, 좌우 눈 그리고 양쪽 귀를 포함하는 머리와 어깨를 하나의 세그먼트로 하는 특징 추출 방법을 적용해, 세그먼트의 하강 속도와 17개의 인체 골격 키포인트가 구성하는 바운딩 박스(Bounding Box)의 높이 대 폭의 비율을 융합하여 실험을 하였다. 제안한 방법은 기존 원시골격 데이터 사용 기법보다 낙상 탐지에 보다 효과적이며 실험환경에서 약 99.8%의 성공률을 보였다.

운전자 시선 및 선택적 주의 집중 모델 통합 해석을 통한 운전자 보조 시스템 (Driver Assistance System for Integration Interpretation of Driver's Gaze and Selective Attention Model)

  • 김지훈;조현래;장길진;이민호
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.115-122
    • /
    • 2016
  • 본 논문은 차량의 내부 및 외부 정보를 통합하여 운전자의 인지 상태를 측정하고, 안전운전을 보조하여 주는시스템을 제안한다. 구현된 시스템은 운전자의 시선 정보와 외부 영상을 분석하여 얻은 주변정보를 mutual information기반으로 통합하여 구현되며, 차량의 앞부분과 내부 운전자를 검출하는 2개의 카메라를 이용한다. 외부 카메라에서 정보를 얻기 위해 선택적 집중모델을 기반으로 하는 게슈탈트법칙을 제안하고, 이를 기반으로 구현된 saliency map (SM) 모델은 신호등과 같은 중요한 외부 자극을 두드러지게 표현한다. 내부 카메라에서는 얼굴의 특징정보를 이용하여 운전자의 주의가 집중되는 외부 응시 정보를 파악하고 이를 통해 운전자가 응시하고 있는 영역을 검출한다. 이를 위해서 우리는 실시간으로 운전자의 얼굴특징을 검출하는 알고리즘을 사용한다. 운전자의 얼굴을 검출하기 위하여 modified census transform (MCT) 기반의 Adaboost 알고리즘을 사용하였으며, POSIT (POS with ITerations)알고리즘을 통해 3차원 공간에서 머리의 방향과 운전자 응시 정보를 측정하였다. 실험결과를 통하여 제안한 시스템이 실시간으로 운전자의 응시하고 있는 영역과, 신호등과 같은 운전에 도움이 되는 정보를 파악하는데 도움이 되었음을 확인할 수 있으며, 이러한 시스템이 운전보조 시스템에 효과적으로 적용될 것으로 판단된다.