• Title/Summary/Keyword: He plasma

Search Result 321, Processing Time 0.027 seconds

A Study on the Discharge Characteristics with New Penning Gas Mixture for AC plasma display panel (AC plasma display panel의 페닝 방전가스 혼합비 변화에 따른 방전특성 연구)

  • 박문필;이승준;이재경;황호정
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.2
    • /
    • pp.127-134
    • /
    • 2002
  • Recently, Plasma display panel(PDP) has been in the spotlight as one of the next generation flat-panel-display device. The luminance and luminous efficiency improvement is the hot issues for making a plasma display into a large flat panel device. In this paper, We suggest a new penning gas mixture, in order to find the optimum mixture gas in plasma display panel. The optimum gas composition has been found by the partial pressure of inert gases(such as Af and Kr added to matrix of He(70%)-Ne(27%)Xe(3%) and Ne(96%)-Xe(4%)). The influences of Ar or Kr addition to Ne(96%)-Xe(4%) and He(70%)-Ne(27%)-Xe(3%) mixture gases are experimentally investigated for AC Plasma Display Panel. When rare As(0.01%-0.03%) or Kr(0.01%-0.03%) is added Ne-Xe and He-Ne-Xe mixture gases, the luminance increases over 10%-20% and luminous efficiency increases over 10%-20% at 200 Torr. It is sure that luminance and efficiency are improved by Penning effect. Also, This influence of Penning effect is shown by increased wall charge(10%-25%). In addition to the result, firing voltage and minimum sustain voltage was approximately decreased by 2V-3V.

Discharge Properties of an AC-Plasma Display Panel

  • Sungkyoo Lim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • Two kinds of the ac-plasma display panel (PDP) with the comb type and the matrix type electrodes were fabricated. The discharge properties were studied as a function of as species (Ne and Ne+He+Xe) and its pressure. The firing voltages (Vf) of the PDP with comb type electrodes were 159 V and 195 V under pure Ne and ne+He+Xe(68:30:2) gas mixture respectively. In case of PDP cell with the matrix type electrodes the Vf was increased to 200 V for pure Ne and 240 V for Ne+He+Xe gas mixture under the same gas pressure(300 mbar).

The Development of Cl-Plasma Etching Procedure for Si and SiO$_2$

  • Kim, Jong-Woo;Jung, Mi-Young;Park, Sung-Soo;Boo, Jin-Hyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.516-521
    • /
    • 2001
  • Dry etching of Si wafer and $SiO_2$ layers was performed using He/Cl$_2$ mixture plasma by diode-type reactive ion etcher (RIE) system. For Si etching, the Cl molecules react with the Si molecules on the surface and become chemically stable, indicating that the reactants need energetic ion bombardment. During the ion assisted desorption, energetic ions would damage the photoresist (PR) and produce the bad etch Si-profile. Moreover, we have examined the characteristics of the Cl-Si reaction system, and developed the new fabrication procedures with a $Cl_2$/He mixture for Si and $SiO_2$-etching. The developed novel fabrication procedure allows the RIE to be unexpensive and useful a Si deep etching system. Since the etch rate was proved to increase linearly with fHe and the selectivity of Si to $SiO_2$ etch rate was observed to be inversely proportional to fHe.

  • PDF

Characteristics of silicon etching related to $He-O_2,\; SiF_4$for trench formation (실리콘 트렌치 식각 특성에 미치는 $He-O_2,\; SiF_4$첨가 가스의 영향)

  • 김상기;이주욱;김종대;구진근;남기수
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.364-371
    • /
    • 1997
  • Silicon trench etching has been carried out using a magnetically enhanced reactive ion etching system in HBr plasma containing He-$O_2$, $CF_4$. The changes of etch rate and etch profile, the degree of residue formation, and the change of surface chemical state were investigated as a function of additive gas flow rate. A severe lateral etching was observed when pure HBr plasma was used to etch the silicon, resulted in a pot shaped trench. When He-$O_2$, $SiF_4$ additives were added to HBr plasma, the lateral etching was almost eliminated and a better trench etch profile was obtained. The surface etched in HBr/He-$O_2/SiF_4$ plasma showed relatively low contamination and residue elements compared to the surface etched in HBr/He-$O-2/CF_4$plasma. In addition, the etching characteristics including low residue formation and chemically clean etched surface were obtained by using HBr containing He-$O_2$ or $SiF_4$ additive gases instead of $CF_4$ gas, which were confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM).

  • PDF

Investigation of Ne and He Buffer Gases Cooled Ar+ Ion Clouds in a Paul Ion Trap

  • Kiai, S.M. Sadat;Elahi, M.;Adlparvar, S.;Nemati, N.;Shafaei, S.R.;Karimi, Leila
    • Mass Spectrometry Letters
    • /
    • v.6 no.4
    • /
    • pp.112-115
    • /
    • 2015
  • In this article, we examine the influences of Ne and He buffer gases under confined Ar+ ion cloud in a homemade Paul ion trap in various pressures and confinement times. The trap is of small size (r0 = 1 cm) operating in a radio frequency (rf) voltage only mode, and has limited accuracy of 13 V. The electron impact and ionization process take place inside the trap and a Faraday cup has been used for the detection. Although the experimental results show that the Ar+ ion FWHM with Ne buffer gas is wider than the He buffer gas at the same pressure (1×10-1 mbar) and confinement time is about 1000 μs, nevertheless, a faster cooling was found with He buffer gas with 500 μs. ultimetly, the obtanied results performed an average cloud tempertures reduced from 1777 K to 448.3 K for Ne (1000 μs) and from 1787.9 K to 469.4 K for He (500 μs)

The Influence of He flow on the Si etching procedure using chlorine gas

  • Kim, J.W.;Park, J.H.;M.Y. Jung;Kim, D.W.;Park, S.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.65-65
    • /
    • 1999
  • Dry etching technique provides more easy controllability on the etch profile such as anisotropic etching than wet etching process and the results of lots of researches on the characterization of various plasmas or ion beams for semiconductor etching have been reported. Chlorine-based plasmas or chlorine ion beam have been often used to etch several semiconductor materials, in particular Si-based materials. We have studied the effect of He flow rate on the Si and SiO2 dry etching using chlorine-based plasma. Experiments were performed using reactive ion etching system. RF power was 300W. Cl2 gas flow rate was fixed at 58.6 sccm, and the He flow rate was varied from 0 to 120 sccm. Fig. 1 presents the etch depth of si layer versus the etching time at various He flow rate. In case of low He flow rate, the etch rate was measured to be negligible for both Si and SiO2. As the He flow increases over 30% of the total inlet gas flow, the plasma state becomes stable and the etch rate starts to increase. In high Ge flow rate (over 60%), the relation between the etch depth and the time was observed to be nearly linear. Fig. 2 presents the variation of the etch rate depending on the He flow rate. The etch rate increases linearly with He flow rate. The results of this preliminary study show that Cl2/He mixture plasma is good candidate for the controllable si dry etching.

  • PDF

Etching Characteristics of $Al_2O_3$ film Using $BCl_3$/He Plasma ($BCl_3$/He 플라즈마를 이용한 $Al_2O_3$ 박막 식각특성 연구)

  • Lee, Hyun-Woo;Yun, Sun-Jin;Kim, Man-Su;Kwon, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.188-189
    • /
    • 2007
  • The etching characteristics of $Al_2O_3$ films using the inductively coupled plasma (ICP) was investigated. The etch gas was the mixture of $BCl_3$ and He. The effect of ICP source and bias powers on etch rate and etch selectivity to polycrystalline Si was investigated in the etch process of $Al_2O_3$. The etch rate of $Al_2O_3$ film was 23nm/min when the source power and bias power were 600W and 60W, respectively. The results also indicated that the etch selectivity to polycrystalline Si could not be enhanced to be higher than 1.0 by changing the ICP source power and bias power, under the experimental conditions used in the present work. Based on plasma parameters extracted from Langmuir probe data, the etching mechanism of $Al_2O_3$ film was discussed in detail.

  • PDF

Evaluation of a Dielectric Barrier Discharge Plasma System for Inactivating Pathogens on Cheese Slices

  • Lee, Hyun-Jung;Jung, Samooel;Jung, Hee-Soo;Park, Sang-Hoo;Choe, Won-Ho;Ham, Jun-Sang;Jo, Cheorun
    • Journal of Animal Science and Technology
    • /
    • v.54 no.3
    • /
    • pp.191-198
    • /
    • 2012
  • The objective of this study was to evaluate the potential use of a dielectric barrier discharge (DBD) plasma system to improve microbial safety of sliced cheese. The atmospheric pressure plasma (APP) effect on visual appearance and a sensory evaluation were also carried out. The number of Escherichia coli inoculated on cheese slices decreased by 0.09, 0.47, 1.16 and 1.47 log cycles with helium (4 liters/min [lpm]) and 0.05, 0.87, 1.89 and 1.98 log cycles with He/$O_2$ mixture (4 lpm/15 standard cubic centimeters per minute), after being treated with plasma for 1, 5, 10, and 15 min, respectively. Significant reductions were also observed in Staphylococcus aureus inoculated onto cheese slices ranging from 0.05 to 0.45 log cycles with He and from 0.08 to 0.91 log cycles with He/$O_2$-treated samples, respectively. Adding oxygen resulted in a significant increase in inactivation of both pathogens. No visible change in the plasma-treated cheese slices was observed even though the instrumental analysis showed a significant decrease in the $L^*$-value and an increase in the $b^*$-value. The cheese slices were damaged after 10 and 15 min of plasma treatment. In addition, significant reductions in sensory quality including flavor, odor, and acceptability of plasma-treated cheese slices were observed. The results indicate that the DBD plasma system has potential for use in sanitizing food products, although the effect was limited. Further development of the APP system is necessary for industrial use.

Analysis on the improvement of Luminous Efficiency by Adding a small amount of Ar Gas in plasma display (PDP에서의 Ar Gas첨가시 효율 개선 경로에 관한 분석)

  • Min, Byeong-Guk;Park, Heon-Geon;Lee, Seok-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.483-488
    • /
    • 1999
  • The optimal mixing condition of four components gas(Ne,Xe,He,Ar) in PDPs was caculated by a numerical simulation method. The dominated reactions in which $Xe^*(^3P_1)$ is produced and decays were investigated in three components gas (Ne,Xe,He) and our new components gas (Ne,Xe,He,Ar). A peak point of $Xe^*$ density appears in the range of 0.1% to 2% of Ar mixture ratio. The results of simulation show that the direct exitation of Xe by electrons has the greatest influence on the inceasing $Xe^*$ density in both gas mixtures.

  • PDF

Generation of Low Temperature Plasma at Atmospheric Pressure and its Application to Si Etching in Open Air (대기압 비평형 플라스마의 발생 및 규소(Si)식각에의 응용)

  • Lee, Bong-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.409-412
    • /
    • 2002
  • Under atmospheric pressure, apparently homogeneous and stable plasma can be generated from insulator barrier rf plasma generators each of which has an rf powered cathode and a grounded anode covered with a dielectric insulating material. In order to characterize the generating plasma under atmospheric pressure, some basic characteristic have been evaluated by the Langmuire probe method as well as by optical emission spectroscopy. From the result of plasma characteristics, the generated plasma was verified to be nonequilibrium; T(electron)>T(excitation)>T(gas). High rate Si(100) etching (($1.5{\mu}m$/min) were achieved by using He plasma containing a small amount of $CF_4$.