• Title/Summary/Keyword: Hazardous Substances

Search Result 525, Processing Time 0.031 seconds

Analysis of Performance Requirements of Mechanical System for Recovery of Deposited Hazardous and Noxious Substances from Seabed around Seaport (항만 해저침적 위험유해물질(HNS) 회수용 기계장치의 성능요건 분석)

  • Hwang, Ho-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.681-688
    • /
    • 2020
  • Approximately 6,000 chemicals are transported through the sea, including hazardous and noxious substances (HNS), which cause marine pollution and are harmful to marine life. The HNS discharged into the sea during the maritime transportation process undergoes physical and chemical changes on the sea surface and in seawater, and some types of HNS sink and are deposited on the seabed. The HNS deposited on the seabed adversely affects the benthic ecosystem, and hence, it is desirable to detect, treat, and recover the HNS on the seabed. Therefore, this study was conducted to analyze the performance requirements that should be considered as the top priority when developing a mechanical system for recovering the HNS deposited on the seabed. Various types of existing dredging devices used for collecting and recovering pollutants from river beds and seabeds were investigated, and 10 performance indices for the mechanical devices were selected. The new performance requirements for the development of the seabed-deposited HNS recovery system were proposed using performance indices. By considering the depth of water in domestic seaports, some of the performance requirements of the mechanical system for recovering deposited HNS from the seabed were obtained as follows: production rate (50-300 ㎥/hr), maximum operation depth (50 m), sediment type (most forms), percentage of solids (10 % or higher), horizontal operating accuracy (±10 cm), limiting currents (3-5 knots). These performance requirements are expected to be useful in the conceptual and basic design of mechanical systems for recovering seabed-deposited HNS.

Conceptual Design of Mechanical System for Recovery of Seabed-Deposited Hazardous and Noxious Substances Based on Performance Requirements (해저침적 HNS 회수용 기계장치의 성능요건 기반 개념설계)

  • Hwang, Ho-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.689-697
    • /
    • 2020
  • Hazardous and noxious substances (HNS) may cause maritime incidents during marine transportation, which are liable to lead to a large amount of spillage or discharge into the sea. The damage to the marine environment caused by the HNS spill or discharge is known to be much greater than the damage caused by oil spill. Particularly dangerous is HNS, which is deposited or buried in the seabed, as it can damage the organisms that live on, in, and near the bottom of the sea, the so-called "benthos," forming the benthic ecosystem. Therefore, it is vital that the HNS deposited on the seabed be recovered. In order to do so, procedures and equipment are required for accurate detection, stabilization treatment, and recovery of HNS in subsea sediment. Thus, when developing a mechanical recovery system, the performance requirements should be selected using performance indices, and the conceptual design of the mechanical recovery system should be based on performance requirements decided upon and selected in advance. Therefore, this study was conducted to arrive at a conceptual design for a mechanical recovery system for the recovery of HNS deposited on the seabed. In the design of the system, based on the fundamental scenario, the method of suction foundation with the function of self enclosing was adopted for recovering the HNS sediment in the subsea sediment. The mechanical recovery system comprises the suction foundation, pollution prevention, a pump system, control system, monitoring device, location information device, transfer device, and tanks. This conceptual design is expected to be reflected and used in the basic design of the components and shapes of the mechanical recovery system.

Determination of 11 Illicit Compounds in Dietary Supplements Using High-Performance Liquid Chromatography and Liquid Chromatography-Tandem Mass Spectrometry

  • Shin, Dasom;Kang, Hui-Seung;Kim, Hyung-soo;Moon, Guiim
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.4
    • /
    • pp.326-333
    • /
    • 2020
  • In this work, we developed an analytical method for determining 11 illicit compounds in dietary supplements using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry. Eleven target compounds, including those meant for weight loss (7-keto-dihydroepiandrosterone, buformin, metformin, phenformin, salbutamol, and tolbutamide), sexual enhancement (dihydroepiandrosterone), and relaxation (asarone, kavain, magnoflorine, and picamilon) were screened and confirmed in dietary supplements. Method validation was performed by evaluating the selectivity, linearity, limit of quantification (LOQ), accuracy, and precision according to the Association of Official Analytical Chemists guidelines. The linearity was > 0.993 for all analytes. The LOQs were ranged in 2.1-9.9 ㎍/mL (HPLC-DAD) and 0.002-0.008 ㎍/mL (LC-MS/MS). The accuracies (expressed as recovery) were 90.0-106% (HPLC-DAD) and 83.0-114% (LC-MS/MS). The precision (expressed as the relative standard deviation) was below 10% using HPLC and LC-MS/MS. The proposed method can be used for the surveillance of illicit compounds in dietary supplements.

Monitoring of Residual Pesticides in Agricultural Products by LC/MS/MS (LC/MS/MS를 이용한 국내 유통 농산물의 잔류농약 실태조사)

  • Kim, Mi-Ok;Hwang, Hye-Shin;Lim, Moo-Song;Hong, Jee-Eun;Kim, Soon-Sun;Do, Jung-Ah;Choi, Dong-Mi;Cho, Dae-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.664-675
    • /
    • 2010
  • This survey was carried out to estimate pesticide residue levels in commercial agricultural products in the year 2009. Residues were examined in 16 commodities (rice, foxtail millet, buckwheat, kidney beans, peanuts, sesame, oranges, grapefruit, kiwifruit, spinach, perilla leaves, leeks, garlic stem, garlic, ginger, and oak mushroom) collected from 22 provinces in Korea. Analyses were performed by multi-methods capable of detecting up to 60 pesticides by LC/MS/MS. A total of 510 samples were collected and analyzed. Of the samples, 96.1% contained no detectable pesticide residues. Detectable residues at or below the MRLs were found in 3.5% of the samples. However, in 0.4% of the samples (spinach and leeks), residue (ethaboxam and fluquinconazole) levels exceeded the MRLs. Furthermore, intake assessments of 7 kinds of pesticide residues were carried out, excluding those exceeding the MRLs. The results showed that the ratios of EDI (estimated daily intake) to ADI (acceptable daily intake) were 0.0001-0.0006%, which indicates that the detected pesticide residues were in a safe range. It is concluded that residual pesticides in agricultural products are properly controlled in Korea.

Experimental Performance Validation of an Unmanned Surface Vessel System for Wide-Area Sensing and Monitoring of Hazardous and Noxious Substances (HNS 광역 탐지 및 모니터링을 위한 부유식 무인이동체 시스템의 실험적 성능 검증)

  • Jinwook Park;Jinsik Kim;Jinwhan Kim;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.11-17
    • /
    • 2022
  • In this study, we address the development of a floating platform system based on a unmanned surface vessel for wide-area sensing and monitoring of hazardous and noxious substances (HNSs). For long endurance, a movable floating platform with no mooring lines was used and modified for HNS sensing and monitoring. The floating platform was equipped with various sensors such as optical and thermal imaging cameras, marine radar, and sensors for detecting HNSs in water and air. Additionally, for experiment validation in real outdoor environments, a portable gas-exposure system (PGS) was built and installed on the monitoring system. The software for carrying out the mission was integrated with the Robot Operating System (ROS) framework. The practical feasibility of the developed system was verified through experimental tests conducted in inland water and real-sea environments.

Hazardous and Noxious Substances (HNSs) Styrene Detection Using Spectral Matching and Mixture Analysis Methods (분광정합 및 혼합 분석 방법을 활용한 위험·유해물질 스티렌 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.1-10
    • /
    • 2022
  • As the volume of marine hazardous and noxious substances (HNSs) transported in domestic and overseas seas increases, the risk of HNS spill accidents is gradually increasing. HNS leaked into the sea causes destruction of marine ecosystems, pollution of the marine environment, and human casualties. Secondary accidents accompanied by fire and explosion are possible. Therefore, various types of HNSs must be rapidly detected, and a control strategy suitable for the characteristics of each substance must be established. In this study, the ground HNS spill experiment process and application result of detection algorithms were presented based on hyperspectral remote sensing. For this, styrene was spilled in an outdoor pool in Brest, France, and simultaneous observation was performed through a hyperspectral sensor. Pure styrene and seawater spectra were extracted by applying principal component analysis (PCA) and the N-Findr method. In addition, pixels in hyperspectral image were classified with styrene and seawater by applying spectral matching techniques such as spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), and spectral angle mapper (SAM). As a result, the SDS and SSV techniques showed good styrene detection results, and the total extent of styrene was estimated to be approximately 1.03 m2. The study is expected to play a major role in marine HNS monitoring.

Characteristics of hazardous oil & liquid fuel waste discharged from various industries (폐유 및 액상연료 공정 폐기물에서 무기물질류의 함량특성)

  • Shin, Sun-Kyoung;Jeong, Seong-Kyeong;Kim, Woo-Il;Jeon, Tae-Wan;Kang, Young-Yeul;Yeon, Jin-Mo;Cho, Yoon-A;Kim, Min-Sun
    • Analytical Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.276-286
    • /
    • 2013
  • This study was performed to investigate the contents characteristics of hazardous oil wastes and wastes of liquid fuels from different industrial process. In order to establish a hazardous waste list, samples of various industrial discharge have been analyzed for 16 non-regulated inorganic hazardous substances (i.e., Cu, Pb, Cd, CN, Hg, As, T-Cr, $Cr^{6+}$, Sb, Ni, F, V, Ba, Zn, Be, Se). In more detail, hazardous waste samples including waste hydraulic oils, waste engine, gear and lubricating oils, waste insulating and heat transmission oils, bilge oils, oil/water separator contents processing were collected from 37 workplaces and analyzed. We observed that the most of the inorganic substances exceeded the proposed criteria in many samples. Especially the concentration of Sb in heat transmission oil, bilge oil and gear & lubricating oils were ranged from 6 to 419 mg/kg whereas the proposed criteria is 50 mg/kg. The assessment result of hazardous waste in Korea according to the EWC showed that the out of 24 processes, 16 belongs to absolute entry and 8 belongs to mirror entry. In conclusion, we expect the outcome of this study to align the classification system of hazardous waste management in South Korea with international legislations, and consequently contribute to reduce environmental pollution as well as health risks by toxic wastes.

Identifying Characteristics of Incidents at Hazardous Material Facilities

  • Kim, Geun-Young;Kim, Sang-Won;Won, Jai-Mu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.51-56
    • /
    • 2009
  • Safety and quality assessment systems are very important in manufacture, storage, transportation, and handling of hazardous materials(hazmat) to prevent hazmat disasters. At present, hazardous materials exist everywhere in our daily lives with various forms of plastics, household products of cleaning and washing detergents, fertilizers or petroleum-related products. However, hazardous materials are dangerous substances when they are released to human or environment. Hazardous materials become very widely used substances in the age of oil-based industrial economy. The Korean Ministry of Environment (KMOE) describes about one hundred thousand types of chemicals are produced and used worldwide. Over four hundred new chemicals are introduced in every year. A crucial question for the Korean hazardous material management may have been raised: Will you be safe from hazardous material incidents? The gas leak disaster at Union Carbide's Bhopal, India in 1984 that made over 6,400 people killed and 30,000 to 40,000 people seriously injured is the representative case for the safety of hazmat. Korea becomes vulnerable to hazmat disaster due to the development of high-tech industry. Thus, the risk assessment system is required to Korea for transferring abandoned hazmat management systems to self-correcting safety systems. This research analyzed characteristics of various hazmat incidents applying statistical analysis methods including frequency analysis or analysis of category data to hazmat incidents for ten years. All of three analyses of category data indicate the significance of causality between hazmat incident site groups and seasons, regional groups, and incident casualty groups.

A Study on Determination of Range of Hazardous Area Caused by the Secondary Grade of Release of Vapor Substances Considering Material Characteristic and Operating Condition (물질특성 및 운전조건을 고려한 증기상 물질의 2차 누출에 따른 폭발위험장소 범위 선정에 관한 연구)

  • Seo, Minsu;Kim, Kisug;Hwang, Yongwoo;Chon, Youngwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.13-26
    • /
    • 2018
  • Currently, local regulations, such as KS Code, do not clearly specify how to calculate the range of hazardous area, so the dispersion modeling program should be used to select dispersion. The purpose of this study is to present a methodology of determining the range of hazardous area which is simpler and more reasonable than modelling by using representative materials and process conditions. Based on domestic and overseas regulations that are currently in effect, variables affecting distance to LFL(Lower Flammable Limit) were selected. A total of 16 flammable substances were modelled for substance variables, process conditions variables, and weather conditions variables, and the statistical analysis selected the variables that affect them. Using the selected variables, a three-step classification method was prepared to select the range of locations subject to explosion hazard.

Preparatory Monitoring of Trace Chemicals Load into Nakdong River (낙동강 상수원에 부하되는 미량유해화학물질의 사전 모니터링)

  • Kang, Mee-A;Jo, Soo-Hyun;Jeong, Gyo-Cheol;Lee, Seung-Hwan;Kim, Sun-Il
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.351-357
    • /
    • 2006
  • Recently there is increasing the flow of hazardous chemical substances caused by industrial waste waters into a main river. It is needed to make the high treatment in drinking water treatment plants for reducing a health risk. Therefore, the monitoring of trace hazardous chemical substances by the industrial waste water inflow is available increasing economical efficiency of river management as well as reduction of risk. In this study, the most important substance among numerical and quantitative trace hazardous chemicals is Hexachlorobutadiene in an effluent of industrial wastes. However all items of GroupII which was included with semiconductor, electricity/electron and metal assemble was not detected. It means that we must consider the characteristics and behavior of load pollutants to water resources to select monitoring items. That was called 'preparatory monitoring'. We can reduce an economical consumption as well as risks from these pollutants using the preparatory monitoring.