• Title/Summary/Keyword: Hassell model

Search Result 2, Processing Time 0.017 seconds

A Historical Review on Discrete Models of Population Changes and Illustrative Analysis Methods Using Computer Softwares (개체 수 변화에 대한 이산적 모델의 역사적 개요와 컴퓨터 소프트웨어를 이용하는 시각적 분석 방법)

  • Shim, Seong-A
    • Journal for History of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.197-210
    • /
    • 2014
  • Species like insects and fishes have, in many cases, non-overlapping time intervals of one generation and their descendant one. So the population dynamics of such species can be formulated as discrete models. In this paper various discrete population models are introduced in chronological order. The author's investigation starts with the Malthusian model suggested in 1798, and continues through Verhulst model(the discrete logistic model), Ricker model, the Beverton-Holt stock-recruitment model, Shep-herd model, Hassell model and Sigmoid type Beverton-Holt model. We discuss the mathematical and practical significance of each model and analyze its properties. Also the stability properties of stationary solutions of the models are studied analytically and illustratively using GSP, a computer software. The visual outputs generated by GSP are compared with the analytical stability results.

DYNAMICS OF A PREY-PREDATOR INTERACTION WITH HASSELL-VARLEY TYPE FUNCTIONAL RESPONSE AND HARVESTING OF PREY

  • BHATTACHARYYA, ANINDITA;MONDAL, ASHOK;PAL, A.K.;SINGH, NIKHITA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1199-1215
    • /
    • 2022
  • This article aims to study the dynamical behaviours of a two species model in which non-selective harvesting of a prey-predator system by using a reasonable catch-rate function instead of usual catch-per-unit-effort hypothesis is used. A system of two ordinary differential equations(ODE's) has been proposed and analyzed with the predator functional response to prey density is considered as Hassell-Varley type functional responses to study the dynamics of the system. Positivity and boundedness of the system are studied. We have discussed the existence of different equilibrium points and stability of the system at these equilibrium points. We also analysed the system undergoes a Hopf-bifurcation around interior equilibrium point for a various parametric values which has very significant ecological impacts in this work. Computer simulation are carried out to validate our analytical findings. The biological implications of analytical and numerical findings are discussed critically.