• Title/Summary/Keyword: Harvesting process

Search Result 238, Processing Time 0.021 seconds

Lanthanide-Cored Supramolecular Systems with Highly Efficient Light-Harvesting Dendritic Arrays towards Tomorrow′s Information Technology

  • Kim, Hwan-Kyu;Roh, Soo-Gyun;Hong, Kyong-Soo;Ka, Jae-Won;Baek, Nam-Seob;Oh, Jae-Buem;Nah, Min-Kook;Cha, Yun-Hui;Jin Ko
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.133-145
    • /
    • 2003
  • We have developed novel lanthanide-cored supramolecular systems with highly efficient light-harvesting dendritic arrays for integrated planar waveguide-typed amplifiers. Er$^{3+}$ ions were encapsulated by the supramolecular ligands, such as porphyrins and macrobicyclics. The supramolecular ligands have been designed and synthesized to provide enough coordination sites for the formation of stable Er(III)-chelated complexes. For getting a higher optical amplification gain, also, the energy levels of the supramolecular ligands were tailored to maintain the effective energy transfer process from supramolecular ligands to erbium(III) ions. Furthermore, to maximize the light-harvesting effect, new aryl ether-functionalized dendrons as photon antennas have been incorporated into lanthanide-cored supramolecular systems. In this paper, molecular design, synthesis and luminescent properties of novel lanthanide-cored integrated supramolecular systems with highly efficient light-harvesting dendritic arrays will be discussed.d.

Effects of impact by mechanical harvesting on storability of onions (Allium cepa L.) (기계수확 시 발생한 충격이 양파(Allium cepa L.)의 저장성에 미치는 영향)

  • Young-Kyeong Kwon;Yong-Jae Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.811-821
    • /
    • 2023
  • This study investigated the storability of onions according to manual and mechanical harvesting. Moreover, we simulated the onion-to-onion impact during the mechanical harvesting process and investigated the storability after artificially subjecting the onions to impact treatment. The onion harvesting methods included hand plucking + manual collection, digger + manual, and digger + mechanical collection. The maximum impact height during the mechanical harvesting process was 0.5 m. Immediately after harvesting, no significant difference in the bruise and wound rate among the harvesting methods was observed. Any increased bruise or wound rate because of mechanical harvesting was presumed to be influenced by soil conditions, such as the presence of gravel, and machine operation factors. Furthermore, the storability during the 8.5 months storage showed no significant difference according to the harvesting methods. In treatments by simulating the impacts during the mechanical harvesting process, the impact heights were 0.0 m (0.0 J), 0.25 m (0.86 J), 0.5 m (1.72 J), and 0.75 m (2.57 J), each performed once, and four times at the same position (3.43 J) and four times at different positions (3.43 J) at 0.25 m. Throughout all the treatments, there were no significant differences in the storability during the 8.5 months storage period.

Piezoelectric Energy Harvesting Characteristics of GaN Nanowires Prepared by a Magnetic Field-Assisted CVD Process

  • Han, Chan Su;Lee, Tae Hyeon;Kim, Gwang Mook;Lee, Da Yun;Cho, Yong Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.167-170
    • /
    • 2016
  • Various piezoelectric nanostructures have been extensively studied for competitive energy harvesting applications. Here, GaN nanowires grown by a nonconventional magnetic field-assisted chemical vapor deposition process were investigated to characterize the piezoelectric energy harvesting characteristics. As a controlling parameter, only the growth time was changed from 15 min to 90 min to obtain different crystallinity and morphology of the nanowires. Energy harvesting characteristics were found to depend largely on the growth time. A longer growth time tended to lead to an increased output current, which is reasonable when considering the enhanced charge potentials and crystallinity. A maximum output current of ~14.1 nA was obtained for the 90 min-processed nanowires.

Novel Low-Volume Solder-on-Pad Process for Fine Pitch Cu Pillar Bump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Eom, Yong-Sung;Choi, Kwang-Seong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.55-59
    • /
    • 2015
  • Novel low-volume solder-on-pad (SoP) process is proposed for a fine pitch Cu pillar bump interconnection. A novel solder bumping material (SBM) has been developed for the $60{\mu}m$ pitch SoP using screen printing process. SBM, which is composed of ternary Sn-3.0Ag-0.5Cu (SAC305) solder powder and a polymer resin, is a paste material to perform a fine-pitch SoP in place of the electroplating process. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder; the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. The Si chip and substrate with daisy-chain pattern are fabricated to develop the fine pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si substrate has 6724 under bump metallization (UBM) with a $45{\mu}m$ diameter and $60{\mu}m$ pitch. The Si chip with Cu pillar bump is flip chip bonded with the SoP formed substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of underfill. The optimized interconnection process has been validated by the electrical characterization of the daisy-chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and micro bump interconnection using a screen printing process.

A Statistical Analysis of Tree-Harvesting Worker Safety

  • Young, Timothy M.;Guess, Frank M.
    • International Journal of Reliability and Applications
    • /
    • v.3 no.2
    • /
    • pp.61-80
    • /
    • 2002
  • Tree-harvesting worker data of 508 separate worker accidents are analyzed and an exploratory approach taken. The worker accident data cover a sample of five years. The scope of the study was the southeastern United States of America. As might be hypothesized, the chainsaw was the most hazardous type of tree-harvesting equipment. It accounted for 55% of the tree-harvesting accidents. Most chainsaw accidents resulted in injuries to the lower extremities and were more frequent among younger employees. The probability of one or more chainsaw accidents occurring in any 30-day period was approximately 0.856. Chainsaw accidents were more likely to occur in late morning and early afternoon. We used statistical tools such as Pareto charts, c-charts and Ishikawa diagrams. Such tools are useful in diagnosing the root-cause of tree-harvesting worker accidents and help in developing preventive safety programs. Recommendations to help improve the quality of information of accident data collected by insurance companies and others are briefly given. The strategy and culture of continuous process improvements are stressed.

  • PDF

Development of a 2-DOF Robot System for Harvesting a Lettuce (2 자유도 상추 수확 로봇 시스템 개발)

  • 조성인;장성주;류관희;남기찬
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2000
  • In Korea, researches for year-round leaf vegetables production system are in progress and the most of them are focused on environment control. Automation technologies for harvesting , transporting and grading need to be developed. This study was conducted to develop harvesting process automation system profitable to a competitive price. 1. Manipulator and end-effector are to be designed and fabricated , and fuzzy logic controller for controlling these are to be composed. 2. The entire system constructed is to be evaluated through a performance test. A robot system for harvesting a lettuce was developed. It was composed of a manipulator with 20DOF (degrees of freedom) an end-effector, a lettuce feeding conveyor , an air blower , a machine vision device, 6 photoelectric sensors and a fuzzy logic controller. A fuzzy logic control was applied to determined appropriate grip force on lettuce. Leaf area index and height index were used as input parameters, and voltage was used as output parameter for the fuzzy logic controller . Success rate of the lettuce harvesting system was 93.06% , and average harvesting time was about 5 seconds per lettuce.

  • PDF

Throughput Maximization for a Primary User with Cognitive Radio and Energy Harvesting Functions

  • Nguyen, Thanh-Tung;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3075-3093
    • /
    • 2014
  • In this paper, we consider an advanced wireless user, called primary-secondary user (PSU) who is capable of harvesting renewable energy and connecting to both the primary network and cognitive radio networks simultaneously. Recently, energy harvesting has received a great deal of attention from the research community and is a promising approach for maintaining long lifetime of users. On the other hand, the cognitive radio function allows the wireless user to access other primary networks in an opportunistic manner as secondary users in order to receive more throughput in the current time slot. Subsequently, in the paper we propose the channel access policy for a PSU with consideration of the energy harvesting, based on a Partially Observable Markov decision process (POMDP) in which the optimal action from the action set will be selected to maximize expected long-term throughput. The simulation results show that the proposed POMDP-based channel access scheme improves the throughput of PSU, but it requires more computations to make an action decision regarding channel access.

A study on the havesting process and operating behaviour of working ships for farming laver (김 양식장 채취선의 운항거동과 수확조업에 관한 연구)

  • KIM, Ok-sam;MIN, Eun-bi;HWANG, Doo-jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.3
    • /
    • pp.223-229
    • /
    • 2020
  • We analyzed the cutting mechanism of laver harvesting machine in the sea area near Gooam Port in Goheung, Jeollanam-do, and investigated the change and efficiency of laver collecting operation in the working ship. The laver working ship slides uniformly from the bow to the upper part of the laver collecting machine on the deck and cuts the wet laver attached to the bottom of the net at the blade of the havesting machine. The laver farming net, which was loaded with laver turrets on the deck by gravity and collected primitives, consisted of a ship structure that led to the stern side and into the sea. The working ship operation is in harvesting process while driving in a S-shape that is separated by one space to efficiently collect the laver net. During laver working ship operation, the speed was 0.51 m/s in the access stage, 0.56 m/s in the havesting stage, and 0.52 m/s in the exit stage. Considering the cutting edge life and production efficiency of the laver harvesting machine, it is appropriate to harvest 1.15 to 1.26 kg/rpm by operating at a rotational speed of about 700 to 800 rpm rather than forcibly harvesting the product at high speed. On the deck of the working ship, 959.7 kg of starboard and 1048.7 kg of center were 964.7 kg of port side. Based on the starboard, 9.3% of the central part and 0.5% of the port side appeared. The reason for this was due to the difference in harvest time according to the turning direction of the working ship.

Fabrication of Artificial Sea Urchin Structure for Light Harvesting Device Applications

  • Yeo, Chan-Il;Kwon, Ji-Hye;Kim, Joon-Beom;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.380-381
    • /
    • 2012
  • Bioinspired sea urchin-like structures were fabricated on silicon by inductively coupled plasma (ICP) etching using lens-like shape hexagonally patterned photoresist (PR) patterns and subsequent metal-assisted chemical etching (MaCE) [1]. The lens-like shape PR patterns with a diameter of 2 ${\mu}m$ were formed by conventional lithography method followed by thermal reflow process of PR patterns on a hotplate at $170^{\circ}C$ for 40 s. ICP etching process was carried out in an SF6 plasma ambient using an optimum etching conditions such as radio-frequency power of 50 W, ICP power of 25 W, SF6 flow rate of 30 sccm, process pressure of 10 mTorr, and etching time of 150 s in order to produce micron structure with tapered etch profile. 15 nm thick Ag film was evaporated on the samples using e-beam evaporator with a deposition rate of 0.05 nm/s. To form Ag nanoparticles (NPs), the samples were thermally treated (thermally dewetted) in a rapid thermal annealing system at $500^{\circ}C$ for 1 min in a nitrogen environment. The Ag thickness and thermal dewetting conditions were carefully chosen to obtain isolated Ag NPs. To fabricate needle-like nanostructures on both the micron structure (i.e., sea urchin-like structures) and flat surface of silicon, MaCE process, which is based on the strong catalytic activity of metal, was performed in a chemical etchant (HNO3: HF: H2O = 4: 1: 20) using Ag NPs at room temperature for 1 min. Finally, the residual Ag NPs were removed by immersion in a HNO3 solution. The fabricated structures after each process steps are shown in figure 1. It is well-known that the hierarchical micro- and nanostructures have efficient light harvesting properties [2-3]. Therefore, this fabrication technique for production of sea urchin-like structures is applicable to improve the performance of light harvesting devices.

  • PDF