• Title/Summary/Keyword: Harvesting Time

Search Result 790, Processing Time 0.029 seconds

A RF Energy Harvesting Based Routing Protocol in Mobile Ad-hoc Wireless Sensor Networks (모바일 애드혹 무선 센서 네트워크에서 RF 에너지 하베스팅 기반 라우팅 프로토콜)

  • Shim, KyuHyun;An, Beongku
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.87-93
    • /
    • 2016
  • In this paper, we propose a RF energy harvesting based routing protocol in mobile ad-hoc wireless sensor networks. The main features and contributions of the proposed routing protocol are as follows. First, establishment of routing route based on both remaining energy of mobile sensor nodes and RF energy harvesting. Second, establishment of routing route by considering availability and stability of route based on energy of mobile sensor nodes to increase lifetime of networks and route. The performance evaluation of the proposed routing protocol using OPNET shows that the routing method considering both route availability and route stability based on RF energy harvesting can increase efficiently route lifetime.

A Study on AC/DC Power Converter of Energy Harvesting for Considered to Solar Position Tracking Control (태양광 위치 추적 제어를 고려한 에너지 Harvesting AC/DC 전력 변환기 구동에 관한 연구)

  • Na, Seung-Kwon;Ku, Gi-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.56-66
    • /
    • 2014
  • In this paper, the solar cell need the characteristic interpreting because the solar cell changes greatly according to the isolation, temperature and load in the photovoltaic development. Moreover, to get many energy in photovoltaic development need the position tracking of the sun according to the environment change and it is necessary to control the output of solar cells up to the time. Simulation and composed microprocessor and sensor chip an power conversion system with boost converter to experiment results are performed to prove the analysis of the converter operation, and to show the possibility of energy harvesting and photovoltaic development need the position tracking small capacitance, the boost rate of boost converter was similar to 167 percent.

Development of Tomato Harvesting Robot - 3-D Detection Technique for identifiying Tomatoes - (토마토 수확로봇 개발 -토마토의 3차원 위치검출기술-)

  • 손재룡;강창호;한길수;정성림;권기영
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.415-420
    • /
    • 2000
  • It is very difficult to mechanize tomato harvesting because identifying a target tomato which is partly covered by leaves and stalks is not easy. This research was conducted to develop tomato harvesting robot which can identifying a target tomato, determining its dimensional position, and harvesting it in a limited time. Followings were major findings in this study. The first visual system of the robot was composed of two CCD cameras, however, which could not detect tomato not placed on the center of lens and partly covered by leaves or stalks. Secondary visual device, combined with two cameras and pan tilting was designed which could decreased the positioning errors within $\pm$10mm but still not enough for covered tomato by any obstacles. Finally, laser detector was added to the visual system that could reduce the position detecting errors within 10mm in X-Y direction and 5mm in Z direction for the covered tomatoes.

  • PDF

Throughput Maximization for a Primary User with Cognitive Radio and Energy Harvesting Functions

  • Nguyen, Thanh-Tung;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3075-3093
    • /
    • 2014
  • In this paper, we consider an advanced wireless user, called primary-secondary user (PSU) who is capable of harvesting renewable energy and connecting to both the primary network and cognitive radio networks simultaneously. Recently, energy harvesting has received a great deal of attention from the research community and is a promising approach for maintaining long lifetime of users. On the other hand, the cognitive radio function allows the wireless user to access other primary networks in an opportunistic manner as secondary users in order to receive more throughput in the current time slot. Subsequently, in the paper we propose the channel access policy for a PSU with consideration of the energy harvesting, based on a Partially Observable Markov decision process (POMDP) in which the optimal action from the action set will be selected to maximize expected long-term throughput. The simulation results show that the proposed POMDP-based channel access scheme improves the throughput of PSU, but it requires more computations to make an action decision regarding channel access.

ICARP: Interference-based Charging Aware Routing Protocol for Opportunistic Energy Harvesting Wireless Networks (ICARP: 기회적 에너지 하베스팅 무선 네트워크를 위한 간섭 기반 충전 인지 라우팅 프로토콜)

  • Kim, Hyun-Tae;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Recent researches on radio frequency energy harvesting networks(RF-EHNs) with limited energy resource like battery have been focusing on the development of a new scheme that can effectively extend the whole lifetime of a network to semipermanent. In order for considerable increase both in the amount of energy obtained from radio frequency energy harvesting and its charging effectiveness, it is very important to design a network that supports energy harvesting and data transfer simultaneously with the full consideration of various characteristics affecting the performance of a RF-EHN. In this paper, we proposes an interference-based charging aware routing protocol(ICARP) that utilizes interference information and charging time to maximize the amount of energy harvesting and to minimize the end-to-end delay from a source to the given destination node. To accomplish the research objectives, this paper gives a design of ICARP adopting new network metrics such as interference information and charging time to minimize end-to-end delay in energy harvesting wireless networks. The proposed method enables a RF-EHN to reduce the number of packet losses and retransmissions significantly for better energy consumption. Finally, simulation results show that the network performance in the aspects of packet transmission rate and end-to-end delay has enhanced with the comparison of existing routing protocols.

Development of Copper Electro-Plating Technology on a Screen-Printed Conductive Pattern with Copper Paste

  • Eom, Yong-Sung;Son, Ji-Hye;Lee, Hak-Sun;Choi, Kwang-Seong;Bae, Hyun-Cheol;Choi, Jeong-Yeol;Oh, Tae-Sung;Moon, Jong-Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.51-54
    • /
    • 2015
  • An electro-plating technology on a cured isotropic conductive pattern with a hybrid Cu paste composed of resin matrix, copper, and solder powders has been developed. In a conventional technology, Ag paste was used to perform a conductive pattern on a PCB or silicon substrate. From previous research, the electrical conductive mechanism and principle of the hybrid Cu paste were concisely investigated. The isotropic conductive pattern on the PCB substrate was performed using screen-printing technology. The optimum electro-plating condition was experimentally determined by processing parameters such as the metal content of the hybrid Cu paste, applied current density, and time for the electroplating in the plating bath. The surfaces and cross-sections were observed using optical and SEM photographs. In conclusion, the optimized processing conditions for Cu electro-plating technology on the conductive pattern were a current density of $40mA/cm^2$ and a plating time of 20min on the hybrid Cu paste with a metal content of 44 vol.%. More details of the mechanical properties and processing conditions will be investigated in further research.

Topology Change Algorithms based on Fluid Flow and Flock Dispersion for Energy-Harvesting Mobile Sensor Networks (에너지 수확 모바일 센서 망을 위한 유체 흐름 및 군집 분산 기반 토폴로지 변환 알고리즘)

  • So, Wonho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.98-106
    • /
    • 2013
  • The duty-cycle synchronization among mobile sensor nodes with energy-harvesting is very important. The nodes should keep their duty-cycle same to others as much as possible because they have to cooperate each other and to consume energy efficiently. The distribution of node position in network affects not only node connectivity but also the active time of synchronized nodes, and it relates to network life-time finally. In this paper, we introduce a network topology change algorithm (TCA) for energy-harvesting mobile sensor networks based on self-synchronized duty-cycling. The algorithm tries to change a network topology into a balanced topology where the mobile sensor nodes are unified according to the density of the number of nodes. For TCA, both fluid flow algorithm and flock dispersion algorithm are proposed and they are evaluated through the simulation in agent based modeling language. TCA is applied to the energy-harvesting mobile sensor networks to improve the synchronization of duty-cycle and to reduce the variation of energy consumption among nodes.

Changes of Paeonol and Paeoniflorin Contents in Chinese Moutan (Paeonia suffruticosa Andrews) Cultivars with Different Harvesting Times and their Parts (중국 목단재배종의 채취시기 및 부위별 Paeonol과 Paeoniflorin의 함량변화)

  • Choi, Kyung;Zhao, Fei;Li, Yuhua;Choi, Jun-Won;Lee, Hak-Ju;Kwon, Yeong-Han;Park, Kwang-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • We analyzed six cultivars of Chinese Moutan, Paeonia suffruticosa Andrews, using HPLC for the investigation of appropriate root harvesting time and distributions of paeonol and paeoniflorin according to the seasonal changes. The contents of paeonol remained nearly constant at different harvesting times. However, the paeoniflorin contents have changed significantly during the harvesting time. These showed the increasing tendency in May, July and September. We compared the distribution of two compounds between two cultivars with different flower forms, Dan Feng and Wu Long Feng Sheng. The contents of paeonol were very low in the leaf and annual shoot. This tendency was not changed during five harvesting times. But the paeoniflorin existed abundantly in the leaf and root. The contents of paeoniflorin in the leaf were highest in May, and gradually decreased.

Effect of Irradiation Time after Harvesting and Irradiation Dose on its Storability of Potatoes (감자 수확후(收穫後) 방사선(放射線) 조사시기(照射時期) 및 조사선량(照射線量)이 그 저장성(貯藏性)에 미치는 영향(影響))

  • Cho, Han-Ok;Byun, Myung-Woo;Kwon, Joong-Ho;Yang, Ho-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.11 no.4
    • /
    • pp.53-59
    • /
    • 1982
  • In order to determine the optimun condition for the long term storage of potatoes by irradiation combined with natural low temperature, the dose range and irradiation time after harvesting of two varieties were investigated. Although optimum dose of potatoes and was different according to the variety 12.5krad seemed optimum untill 15-30 day after harvesting and 15krad was for later than 45 day after harvesting. The sooner the irradiation was efficient after harvesting. Optimum dose irradiated group were better in change of sprouting, rotting, weightloss and shrivelling and was extended the storage period more than four months compared with control at natural low temperature storage room.

  • PDF

Growth and Optimum Harvesting Time of Pod-edible Peas (Pisum sativum L.)

  • Moon, Hyun-Sook;Hwang, Young-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.93-96
    • /
    • 2000
  • The present study was performed to obtain the basic information about growth and quality related characteristics and optimum harvesting time for podedible pea which is a new crop in Korea but believed to have a great deal of potentials for both domestic and overseas markets. They can be consumed either as a fresh succulent vegetable or as tender green pods. The daily green pod yield of pod-edible peas started to increase from ten days after flowering and the maximum yield was recorded on 26 days after flowering. Ninety percent of pod yields could be harvested from 16 to 36 days after flowering. Mean green pod yield for the tested varieties was approximately 8.0 t/ha. Total vitamin C content of pod-edible peas showed continuously decreasing trends from five days after flowering. The highest sucrose content was obtained at ten days after flowering. The highest panel score based on sweetness, chewiness, and hardness for the processed green pods was shown at 10-15 days after flowering in all varieties tested, indicating that the optimum harvesting time for pod-edible peas was considered to be 10-15 days after flowering.

  • PDF