• Title/Summary/Keyword: Harvester

Search Result 400, Processing Time 0.026 seconds

Fabrication of a Low Frequency Vibration Driven Electromagnetic Energy Harvester Using FR-4 Planar Spring and Its Characteristics (FR-4 평판 스프링 기반 저주파수용 진동형 전자기식 에너지 하베스터의 제작과 그 특성)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.238-242
    • /
    • 2011
  • This paper describes the fabrication and characteristics of a low frequency vibration driven electromagnetic energy harvester. The fabricated generator consists of a permanent magnet of NdFeB, a FR-4 planar spring and a Copper cylinder type coil. ANSYS modal analysis was used to determine the resonant frequency for the generator. The implemented generator is capable of producing up to 550 mV peak-to-peak under 7 Hz frequency, which has a maximum power of $95.5\;{\mu}W$ with load resistance of $580\;{\Omega}$. This device is shown to generate sufficient power at different resonating modes, and the experimental and simulated results are discussed and composed.

Structural Analysis Simulation of Cantilever Shaped Piezoelectric Energy Harvester Using COMSOL Multiphysics (COMSOL Multiphysics를 활용한 캔틸레버 형태의 압전 에너지 하베스터 구조 해석 시뮬레이션)

  • Kwak, Min Sub;Hwang, Geon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.416-425
    • /
    • 2021
  • In the 4th industrial age, electronic devices are becoming smaller and lighter with a low power consumption to overcome spatial limitation. The piezoelectric energy harvesters can convert mechanical kinetic energy into electric energy; thus, enabling the operation of small electronic devices. Recently, various piezoelectric harvesters have been reported and the electric output from these harvesters could be anticipated by theoretical analysis methods. For example, COMSOL Multiphysics software provides a theoretical simulation of piezoelectric effect with a combination of mechanical and electrical phenomena in the piezoelectric materials. This article introduces a brief modeling of piezoelectric harvester to investigate mechanical stress and electrical output of harvesting devices by the COMSOL Multiphysics software.

Effective Mechanized Harvesting Methods for Underground Parts of Some Medicinal Crops (뿌리이용(利用) 약용작물(藥用作物)의 기계수확(機械收穫) 효율(效率율) 비교(比較))

  • Kim, Young-Guk;Bang, Jin-Ki;Yu, Hong-Seob
    • Korean Journal of Medicinal Crop Science
    • /
    • v.6 no.1
    • /
    • pp.57-61
    • /
    • 1998
  • Angelica gigas, Astragalus membranaceus and Ligusticum chuanxiong have been grown for a long time in Korea as medicinal crops with underground parts. Its harvesting method has been depended entirely on manual labor. Therefore, harvesting involved much work. This study was to determine an effective mechanized harvesting method for underground parts of some medicinal crops by several machines. Labor time was decreased by 61 percent in Angelica gigas and by 70 percent in Astragalus membranaceus by the use of poclain harvester, however, in Ligusticum chuanxiong was decreased 68 percent by multi - root harvester compared with conventional system (manual harvest). The poclain harvester was suitable for harvesting in Angelica gigas and Astragalus membranaceus plots, but multi - root harvester was not satisfactory. Multi - root harvester appeared to be appropriate harvester for Ligusticum chuanxing.

  • PDF

Development and Evaluation of the Road Energy Harvester Using Piezoelectric Cantilevers (압전 캔틸레버 구조를 이용한 도로용 에너지 하베스터의 개발 및 평가)

  • Kim, Chang-Il;Kim, Kyung-Bum;Jeon, Jong-Hac;Jeong, Young-Hun;Cho, Jeong-Ho;Paik, Jong-Hoo;Kang, In-Seok;Lee, Moo-Yong;Choi, Beom-Jin;Cho, Young-Bong;Park, Shin-Seo;Nahm, Sahn;Lee, Young-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.511-515
    • /
    • 2012
  • A road energy harvester was designed and fabricated to convert mechanical energy from the vehicle load to electrical energy. The road energy harvester is composed of 24 piezoelectric cantilevers and a vehicle load transfer mechanism. Applying a vehicle load transfer mechanism rather than directly installing energy harvesters under roads decreases the area of road construction and allows more energy harvesters to be installed on the side of the road. The power generation amount with respect to the vehicular velocity change was assessed by installing the vehicle load transfer mechanism and the energy harvester in the form of speed bumps and underground. The energy harvester installed in a speed bump form generated power of 7.61 mW at the vehicular velocity of 20 km/h. Also, power generation of the energy harvester installed in the underground form was 63.9 mW at the vehicular velocity of 28 km/h. Although the number of piezoelectric cantilevers was reduced by 1/3 to 24 in comparison to the previous research results with 72 piezoelectric cantilevers, similar power generation characteristic value was obtained within the vehicular velocity of 20 km/h by altering the vehicle load transfer mechanism and cantilever vibration method.

Harvesting Performance of the Experimental Pick-up Type Pulse Crop Harvester for Sprout Bean (시험용 수집형 두류 수확기의 나물 콩 수확성능)

  • Choi, Yeong-Soo;Yoo, Soo-Nam
    • Journal of agriculture & life science
    • /
    • v.51 no.2
    • /
    • pp.165-173
    • /
    • 2017
  • To evaluate performance of the experimental pick-up type pulse crop harvester for harvesting sprout bean, its pick-up and discharging grain loss ratios, grain quality such as whole grain ratio, damaged grain ratio, unthreshed grain, and foreign material ratio in grain tank, germination rate of threshed grain, and theoretical field capacity of the harvester were analyzed according to engine speeds of 2000, 2400 and 2800 rpm and harvesting speeds of 0.6, 1.0 and 1.4 m/s. It is considered that the harvester showed optimum performance at the engine speed of 2800 rpm and the harvesting speed of 1.0 m/s, and then average pick-up grain loss ratio of 2.7%, discharging grain loss ratio of 0.5%, whole grain ratio of 99.3%, damaged grain ratio of 0.2%, unthreshed grain ratio of 0.0%, foreign material ratio of 0.2%, and germination rate at 8 days after seeding of 72.8% were shown. It is considered that the harvester has lower grain loss and higher grain quality than the imported bean combines. And also as it could harvest 3 rows of cut and dried sprout bean crop width of which was about 2 m, its effective field capacity was estimated for about 50 a/h.

Development of a Lifting Type Garlic Harvester(2) - Construction and Performance Test of a Prototype Harvester - (인발식 마늘수확기 개발(2) - 시작기 제작 및 성능 검증 -)

  • 장영창;노광모;박준걸
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1999.07a
    • /
    • pp.83-88
    • /
    • 1999
  • 인발식 마늘 수확기의 기본개념은 마늘줄기가 인발 가이드를 따라 마늘줄기 인발부로 안내되어 지면 상방향으로 인발, 이송되는 방식으로서 인력에 의한 마늘수확 메카니즘과 유사하다. 그러나 수확기가 전진함에 따라 마늘이 연속적으로 인발되어 인력작업에 비해 매우 높은 수확능률을 갖는다. 또한 굴취식 수확기와 비교하여 연료가 절감되고 통마늘의 손상이 적은 장점이 있다. (중략)

  • PDF

Design and analyses of vibration driven energy harvester for low frequency (저주파수용 진동형 에너지 하베스터의 최적 설계 및 해석)

  • Ryu, Kyeong-Il;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.238-238
    • /
    • 2010
  • This paper describes the design and analysis of vibration driven energy harvester for low frequency. The maximum output powers at load were $124.2{\sim}132.2\;{\mu}W$ with magnets during 3 mm input displacement at 6 Hz resonant frequency of system.

  • PDF

Design of a Vibration-Powered Piezoelectric Energy-Harvesting Module by Considering Variations in Excitation Frequency (외부 가진 가변 주파수를 고려한 압전 진동 에너지 수확 모듈의 설계)

  • Kim, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.637-644
    • /
    • 2010
  • A vibration-powered piezoelectric energy harvester yields the maximum power output when its resonant frequency is made equal to the excitation frequency; however, the power output is dramatically decreased when the energy harvester is operated at off-resonance frequency. It has been observed that the resonant frequency of a piezoelectric energy harvester may change with time and that the excitation frequency often varies when the energy harvester is used in real applications. Hence, in this study, we propose a piezoelectric energy-harvesting module that is suitable for excitations in a certain frequency range. The frequency characteristics of the electrical output of the module are studied through analysis and experiment. A simple frequency tuning method is also suggested for the proposed energy-harvesting module; in this method, frequency tuning is achieved by changing the electrical connections between the constituent energy-harvesting units of the module.

Fabrication and Energy Harvesting Characteristics of Water Energy Harvester Using Piezoelectric Ceramic Bimorph Cantilever (바이몰프형 압전세라믹 캔틸레버를 이용한 수력에너지 하베스터 모듈 제작 및 발전 특성)

  • Kim, Kyoung-Bum;Kim, Chang-Il;Yun, Ji-Sun;Jeong, Young Hun;Nahm, Jung Hee;Cho, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn;Seong, Tae-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.943-948
    • /
    • 2012
  • A new water energy harvester module, which is composed of piezoelectric bimorph cantilevers, harvesting circuit and a shaft with 16 impellers at a center axis, was fabricated for energy harvesting application. High energy density $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt% $Nb_2O_5$ (PZT-CN) thick film obtained by tape casting method was used for the bimorph cantilever. The PZT-CN bimorph cantilever with a proof mass of 49 g exhibited extremely high output power of 22.5 mW (24 $mW//cm^3$) at resonance frequency of 11 Hz. In addition, the fabricated water energy harvester has a cylindrical structure with 48 bimorph cantilevers clamped at inner surface. A significantly high output power of 433 mW was obtained at a rotation speed of 120 rpm with a resistive load of $500{\Omega}$ for the water energy harvester.

Design and Evaluation of a Piezoelectric Energy Harvester Produced with a Finite Element Method

  • Kim, Chul-Min;Kim, Chang-Il;Lee, Joo-Hee;Paik, Jong-Hoo;Cho, Jeong-Ho;Chun, Myoung-Pyo;Jeong, Young-Hun;Lee, Young-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.206-211
    • /
    • 2010
  • Piezoelectric energy harvesting uses piezoelectric, which is able to convert unused mechanical vibration energy to electrical energy, such as with motor and machinery. The piezoelectric energy harvester was constructed with a cantilever made of lead zirconate titanate with a metal plate. The primary material was soft lead zirconium titanate (PZT-5H) due to the large strain availability, acceptable mechanical strength and high piezoelectric constant. This technique's drawback is that the energy efficiency is lower than the other energy harvesting methods, but this study increases the output electric power efficiency by analyzing a finite element method for the structure of the piezoelectric energy harvester. We manufactured two cantilever types as follows: the L-60 and L-33 bimorph piezoelectric energy harvesters. Their resulting energy harvesters were able to obtain high voltage values as follows: 27.4 mV and 40.6 mV. Moreover, these results have a similar band of resonance frequency it comparison to the simulation. Consequently, this study was confirmed with validity. The output electric powers of the L-60 and L-33 types have 3.1 mW/s and 5.8 mW/s with 47 Hz and 148 Hz of resonance frequency and then, the load resistivities were $100k\Omega$ and $10k\Omega$, respectively.