• Title/Summary/Keyword: Harvest rate

Search Result 686, Processing Time 0.025 seconds

Proper Tree Vigor and Crop Load in High Density Planting System for 'Fuji'/M.9 Apple Trees (사과 '후지'/M.9 밀식 사과원의 성과기 적정 결실 및 수세 기준)

  • Park, Moo-Yong;Park, Jeong-Kwan;Yang, Sang-Jin;Han, Hyun-Hee;Kang, In-Kyu;Byun, Jae-Kyun
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.306-311
    • /
    • 2008
  • Proper tree vigor and crop load were determined for 'Fuji'/M.9 apple trees in high density planting system from 2001 to 2003. Leaf/fruit ratio was highly correlated to mean fruit weight (y=1.715x+205.02, $R^2=0.66^{**}$) and yield (y=-35.l56x+5963.7, $R^2=0.44^{**}$). In addition, there was a significant correlation between the number of leaves per tree and mean fruit weight. However, crop load did not affect tree growth, soluble solids content of fruit, and Hunter a value. To harvest the fruits heavier than 300 g without biennial bearing, it was appropriate to crop 55 to 64 fruits in a tree with 55 leaves per fruit of adult tree. The good indices for proper tree vigor could be 20 to 25 cm of mean shoot length and above 95% of shoot termination rate. Moreover, no secondary growth and 20 to 30% of spur formation could be the indices for highly productive tree vigor.

Residual Characteristics and Behavior of Azoxystrobin in Ginseng by Cultivation Conditions (인삼 중 azoxystrobin의 재배방법별 잔류특성 및 행적)

  • Lee, Jae Yun;Noh, Hyun Ho;Park, Hyo Kyoung;Kim, Jin Chan;Jeong, Hye Rim;Jin, Me Jee;Kyung, Kee Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 2015
  • To determine residual characteristics of azoxystrobin in ginseng under different cultivation conditions such as use of straw mat on cultivation soil and filling gap between ginseng stem and soil surface and also to elucidate its approximate behavior after spraying, 20% azoxystrobin suspension concentrate solution was sprayed 4 times onto 5-year-old ginseng with 10 days interval at a application rate of about 200 L/10 a and then residues in samples were analyzed. The residue level was lower in case of use of straw mat and filling the gap with soil than in case of no use of straw mat and no filling the gap, representing that use of straw mat and filling the gap with soil were contributed to decrease of pesticide residues in ginseng. A large portion of the test pesticide distributed onto ginseng leaf with a higher specific surface area. The amounts of azoxystrobin residues decreased in ginseng leaf, while increased on soil surface, as close to harvest. About 0.1% of azoxystrobin sprayed was distributed in ginseng root and 12.7-20.4% (mean 16.6%) of azoxystrobin could be decreased for dietary intake by removing of rhizome from ginseng root before intake.

Characteristic of Decomposition of Residual Pesticides on Diazinon and Endosulfan in Young Radish (시설 열무 중 diazinon 및 endosulfan에 대한 잔류농약 분해특성)

  • Choi, Geun-Young;Kim, Jun-Hyoung;Han, Byung-Jae;Jeong, Yang-Mo;Seo, Hye-Young;Shim, Sung-Lye;Kim, Kyong-Su
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.238-243
    • /
    • 2004
  • To investigate the changes in content of residual pesticides for safety production of young radishes in the production steps in greenhouse and to evaluate the safety of young radishes in the final consuming step, biological half-life of pesticides (diazinon, endosulfan) in packaging products was studied. Samples were collected regularly from 2 hours to 10 days after the distribution of pesticides in young radishes. The contents of residual pesticides in young radishes during cultivating in greenhouse as the levels of distribution concentrations reduced with time. During 10 days of pesticides distribution, decomposition rate of pesticides were diazinon > endosulfan. A half-life of endosulfan was 0.6 day longer than diazinon because endosulfan derived persistent endosulfan sulfate. To produce the safe young radish, after the distribution of the pesticides the desirable harvest time based on maximum residue limit (MRL) was 6th day diazinon for and 10th day for endosulfan.

Criteria of Nitrate Concentration in Soil Solution and Leaf Petiole Juice for Fertigation of Cucumber under Greenhouse Cultivation in Gyeonggi region

  • Park, Jung-Soo;Roh, Ahn-Sung;Jang, Jae-Eun;Kang, Chang-Sung;Kim, Hee-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.295-304
    • /
    • 2015
  • To develop a technique for efficient management of fertility for cucumber in greenhouse, a quick test method to quantify nitrate ($NO_3{^-}$) content in soil solution and leaf petiole juice using a simple instrument that are easy to use for farmers was investigated. N fertilizer (urea) was applied at 0, 50, 100 and 200% levels of the recommended application rate from 30 days after transplanting to harvest by soil fertigation treatments. Stable results were obtained from analysis of nitrate ($NO_3{^-}$) using top $10^{th}$ or $11^{th}$ leaf petioles collected between 10 to 11 am in the morning. Under the semiforcing culture, $NO_3{^-}$ content of leaf petiole juice was highest at 60 days after transplanting (DAT) at all fertigation treatments. Appropriate $NO_3{^-}$content of leaf petiole juice was $2,418{\pm}78{\sim}2,668{\pm}118$ at 45 DAT, $3,032{\pm}90{\sim}3,332{\pm}63$ at 60 DAT, $2,709{\pm}50{\sim}3,158{\pm}155$ at 75 DAT, $2,535{\pm}49{\sim}2,907{\pm}83$ at 90 DAT, and $2,242{\pm}48mg\;L^{-1}$ at 105 DAT. In addition, appropriate $NO_3{^-}$ content of soil solution was $167{\pm}9{\sim}212{\pm}15$ at 45 DAT, $83{\pm}10{\sim}112{\pm}12$ at 60 DAT, $49{\pm}3{\sim}92{\pm}6$ at 75 DAT, $71{\pm}9{\sim}103{\pm}9$ at 90 DAT, and $73{\pm}9mg\;L^{-1}$ at 105 DAT. The cucumber yield at 100% N level of fertigation was $7,770kg\;10a^{-1}$ and no difference in yield was found at 200% N level of fertigation. However, there was 12% decrease in yield at 50% N fertigation and, 17% decrease at 0% N fertigation. Under retarding culture, $NO_3{^-}$ concentration of leaf petiole juice was highest at 55 days after transplanting (DAT) at all fertigation treatments. Appropriate $NO_3{^-}$ content of leaf petiole juice was $2,464{\pm}102{\sim}2,651{\pm}33$ at 45 DAT, $3,025{\pm}71{\sim}3,314{\pm}84$ at 55 DAT and $2,488{\pm}92mg\;L^{-1}$ at 65 DAT, respectively. Appropriate $NO_3{^-}$ content of soil solution was $111{\pm}10{\sim}155{\pm}14$ at 45 DAT, $93{\pm}7{\sim}147{\pm}14$ at 55 DAT, $67{\pm}4mg\;L^{-1}$at 65 DAT, respectively. The cucumber yield at 50% N fertigation was not different from $1,697kg\;10a^{-1}$ of 100% N fertigation level and even with that of the 200% N fertigation. However, there was 21% decrease in yield at 0% N fertigation.

Effects of Granular Silicate on Watermelon (Citrullus lanatus var. lanatus) Growth, Yield, and Characteristics of Soil Under Greenhouse

  • Kim, Young-Sang;Kang, Hyo-Jung;Kim, Tae-Il;Jeong, Taek-Gu;Han, Jong-Woo;Kim, Ik-Jei;Nam, Sang-Young;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.456-463
    • /
    • 2015
  • The objective of this study was to determine the effects of granular type of silicate fertilizer on watermelon growth, yield, and characteristics of soil in the greenhouse. Four different levels of silicate fertilizer, 0(control), 600, 1,200, $1,800kg\;ha^{-1}$ were applied for experiment. The silicate fertilizer was applied as a basal fertilization before transplanting watermelon. Compost and basal fertilizers were applied based on the standard fertilizer recommendation rate with soil testing. All of the recommended $P_2O_5$ and 50% of N and $K_2O$ were applied as a basal fertilization. The N and $K_2O$ as additional fertilization was split-applied twice by fertigation method. Watermelon (Citrullus lanatus Thunb.) cultivar was 'Sam-Bok-KKuol and main stem was from rootstock (bottle gourd: Lagenaria leucantha Standl.) 'Bul-Ro-Jang-Sang'. The watermelon was transplanted on April, 15. Soil chemical properties, such as soil pH, EC, available phosphate and exchangeable K, Mg, and available $SiO_2$ levels increased compared to the control, while EC was similar and the concentrations of soil organic matter decreased. Physical properties of soils, such as soil bulk density and porosity were not different among treatments. The growth characteristics of watermelon, such as stem diameter, fresh and dry weight of watermelon at harvest were thicker and heavier for silicate treatment than the control, while number of node was shorter than the control. Merchantable watermelon increased by 3-5% compared to the control and sugar content was 0.4 to $0.7^{\circ}Brix$ higher than the control. These results suggest that silicate fertilizer application in the greenhouse can improve some chemical properties of soils and watermelon stem diameter and dry weight, which are contributed to watermelon quality and marketable watermelon production.

Response of Organic Fertilizer Application Rates and Different Harvesting Periods on Forage Yield and Quality of Kenaf (Hibiscus cannabinus L.) (유기질비료의 시용과 수확시기가 Kenaf (Hibiscus cannabinus L.)의 생산성과 사료가치에 미치는 영향)

  • Jo, Ik-Hwan;Byamungu, Mayange Tomple
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.4
    • /
    • pp.615-626
    • /
    • 2020
  • The objective of present experiment was to examine the impact of different organic nitrogen (N) fertilizer application rates and different harvesting periods on the forage yield and feed value of kenaf (Hibiscus cannabinus L.). This study was carried out from May to September 2019, the amount of 80 kg of kenaf seed/ha were applied with different rates of nitrogen fertilizer. The plants were sampled at 10 days intervals (100, 110, 120, and 130 days after seeding) from different harvesting dates. In the organic fertilizer treatments, the highest dry matter (DM) yield was observed in the application rate at 250 kg of N/ha. Crude protein (CP) content in leaves was similar between the organic fertilizer rates at 200 and 250 kg of N/ha and were higher compared with other fertilizer treatments. The highest CP content in the stem was 4.3% in the organic fertilizer application rates st 250 kg of N/ha. Neutral detergent fiber (NDF) in leaves showed no significant difference between the chemical fertilizer rates at 200 and 250 kg of N/ha, and the organic fertilizer rates at 150 and 250 kg of N/ha. In addition, DM yield of kenaf was highest in the harvest of 100 days after seeding, and tended to decreased significantly with increase of harvesting periods (p<0.05). As the growth progressed, the plant height and stem ratio increased but the leaves ratio decreased significantly (p<0.05) and the highest was found at 110 days after seeding. The highest CP, Acid detergent fiber (ADF), NDF and total digestible nutrient (TDN) contents in leaves were 13.9, 25.4, 40.5 and 71.1%, respectively that were affected by different harvesting periods. Also, the ADF and NDF in stem increased significantly with increase of kenaf maturity (p<0.05). In conclusion, the optimal organic fertilizer application rates and the proper harvesting periods for the forage yield and quality of kenaf were at 200 to 250 kg of N/ha, and 100 to 110 days after seeding, respectively.

Breeding of Self-compatible Pear "Wonkyo Na-jasoojung 2" (배 자가결실성 "원교 나-자수정 2호")

  • Shin, Il Sheob;Shin, Yong Uk;Hwang, Hae Sung;Heo, Seong;Kim, Ki Hong;Kang, Sam Seok;Kim, Yoon Kyeong
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.154-157
    • /
    • 2009
  • Pear has a gametophytic self-incompatibility (SI) system and its SI reaction is controlled by a single multi-allelic S-locus. 'Wonkyo Na-jasoojung 2' was selected from a cross between 'Wonwhang', early season major pear cultivar with high fruit quality and self-incompatible, and 92-18-79 (${S_4}^{sm}{S_4}^{sm}$) obtained from self cross of 'Osa-nijisseiki' (${S_2S_4}^{sm}$) (SM, stylar-part mutant), self-compatible bud mutant that originated from self-incompatible 'Nijisseiki' ($S_2S_4$) made in 2001 at the National Institute of Horticultural and Herbal Science, Rural Development Administration in Korea. '92-18-79' was selected as a self-compatible source through field investigation. It bloomed 1 day earlier than 'Osa-Nijisseiki' and similar to 'Wonwhang' in 2008. It is medium in tree vigor and spreading in tree habit. 'Wonkyo Na-jasoojung 2' is classified as highly susceptible to pear scab (Venturia nashicola) similar to 'Osa-Nijisseiki' and as resistant to black spot (Alternaria kikuchiana) similar to 'Wonwhang'. It had 65.7% fruiting rate by self pollination. The average optimum harvest time of 'Wonkyo Na-jasoojung 2' was 148 days after full bloom and it matured 2 days earlier than 'Osa-Nijisseiki' and 11 days later than 'Wonwhang'. The fruit is roundish oblate in shape and yellowish brown in skin color. Average fruit weight was 445 g and soluble solids content was 13.3 $^{\circ}Brix$. The flesh had abundant juice and negligible grit.

Effects of Green Manures and Complemental Fertilization on Growth and Nitrogen Use Efficiency of Chinese Cabbages Cultivated in Organic Systems (녹비작물과 추비방법이 유기재배 배추의 생육과 질소 이용효율에 미치는 영향)

  • Cho, Jung-Lai;An, Nan-Hee;Nam, Hong-Sik;Lee, Sang-Min
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.731-743
    • /
    • 2018
  • This study was conducted to evaluate the effects of green manures and complemental fertilization with oil cake or liquid fertilizer on growth and nitrogen use efficiency of Chinese cabbage cultivated in organi systems. Field experiments were carried out at the National Institute of Agricultural Science in Suwon, South Korea from 2012 to 2014. Two green manure crops, Crotalaria and Hairy vetch, was cultivated in summer and in winter, respectively. The application methods of the green manure consisted of three tillage systems (overall tillage, partial tillage and no tillage). Oil cake and liquid fertilizer were used as complemental fertilizer. The results showed that when used as covering material in the upland soil without tillage, green manure fertilization was more effective in increasing growth and yield of Chinese cabbage than when incorporated into soil. It was possible to grow and harvest Chinese cabbage in the spring season by the application of hairy vetch as winter green manure. The higher yield of Chinese cabbage with green manure application was caused by the lower incidence rate of soft rot and tip-burn. The yield of the Chines cabbage that received green manure applications over two consecutive seasons followed by the supplemental fertilization with oil cake was similar to that of the conventional chemical fertilization. Following a single season green manure application in summer, however, the yield of cabbage was only about 70% of the conventional treatment. Green manure cultivation with additional liquid fertilization produced a yield similar to the conventional fertilization treatment, soil inorganic nitrogen concentration remained stable and the nitrogen use efficiency increased in the green manure applied soil. In conclusion, the organic cultivation of Chinese cabbage in the autumn season could be outperformed in the upland soil receiving two seasons (winter and summer) of green manure fertilization followed by the supplemental fertilization with liquid fertilizer.

Occurrence and Growth Characteristics of Natural Seedlings by Harvest Type in a Larix kaempferi Forest (벌채 유형별 일본잎갈나무 천연 치수의 발생 및 생장특성 분석)

  • Chung, Junmo;Kim, Hyunseop
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.400-412
    • /
    • 2020
  • We analyzed the growth characteristics of naturally regenerated seedings of Larix kaempferi in order to propose a field-applicable regeneration method. Experimental sites were established at Gapyeong in Gyeonggi-do and at Bonghwa in Gyeongsangbuk-do. We analyzed seed inflow features, occurrence, and growth characteristics of natural seedlings for three years. The reserved seed-tree site producedthe greatest number of inflow seeds and followed by seed-tree site and clear-cut site. In addition, the reserved seed-tree method was found to be more efficient than other methods in evenly scattering seeds. The rate of seedling occurrence at treatment sites (e.g., harvesting and scratching) was 2.4%, which is 8.0 times higher than the seedling occurrence (0.3%) at the non-treatment sites. There were approximately 470,000 seedlings per hectare at the treatment sites in June of the first year after regeneration and approximately 78,000 seedlings per hectare in October of the third year. The average diameter of the root collar of the seedlings in the third year was 6.5 mm, and the average height of the seedlings was 50.4 cm. These results indicate that it is possible to create a secondary forest of L. kaempferi by natural regeneration if harvesting and scraping are implemented during seed fructification. Considering the rapid growth of L. kaempferi shown in this study, the proposed method would be an efficient reforestation technique.

Effects of Azolla Incorporation During Paddy Cultivation on Weed Control, Nitrogen Supply and Rice Yield (물개구리밥(Azolla)이 논 잡초 발생, 질소공급 및 쌀 수량에 미치는 영향)

  • Shin, Jong-Hee;Han, Chae-Min;Kwon, Jung-Bae;Won, Jong-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.271-278
    • /
    • 2021
  • Azolla is a genus of small aquatic ferns native to Asia, Africa, and America. Azolla is potentially significant as a nitrogen source in agriculture, particularly in conjunction with rice (Oryza sativa L.) cultivation. In addition, Azolla may either control weeds or act as a weed depending on management; therefore, we aimed to determine the effect of Azolla incorporation on weed (e.g., Monochoria vaginalis, Rotala indica, Aeschynomene indica, and Cyperus amuricus) control and its other benefits during rice cultivation. The effects of Azolla on weed emergence were evaluated based on plot area coverage by the Azolla mat, which appears as a green sheet over water, and the rate of weed emergence in paddy field. Weed occurrence was investigated 40 days after Azolla inoculation. Soil samples from the experimental plots were collected following harvest in 2014-2015, and analyzed. Moreover, rice growth, yield, and grain quality were measured. Azolla suppressed weed growth by 72%. Azolla mat incorporation in rice fields suppressed weed growth by over 60%. In addition, Azolla promoted nitrogen fixation. Compared with nitrogen management using chemical fertilizers, Azolla incorporation showed the potential for various positive effects, including the improvement of soil fertility by increasing total nitrogen, and organic matter content. Rice grown with Azolla maintained its yield without additional herbicide treatment. Moreover, the palatability of cooked rice was better when grown with Azolla.