• Title/Summary/Keyword: Harvest Environment

Search Result 465, Processing Time 0.027 seconds

Establishment of Pre-Harvest Residue Limit for Pyrimethanil and Methoxyfenozide during Cultivation of grape (포도(Vitis vinifera L.) 중 Pyrimethanil 및 Methoxyfenozide의 생산단계 잔류허용기준 설정)

  • Kim, Ji Yoon;Woo, Min Ji;Hur, Kyung Jin;Manoharan, Saravanan;Kwon, Chan-Hyeok;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2015
  • The present study was aimed to predict the pre-harvest residue limits (PHRLs) of pyrimethanil (fungicide) and methoxyfenozide (insecticide) in grape, and to estimate their biological half-lives and residual characteristics. The pesticides were sprayed once on grape in two different fields 10 days before harvest. At the end of 0, 1, 2, 3, 5, 7 and 10 days after application, samples were harvested for further analysis. The residual pesticides were extracted with acetonitrile and partitioned with dichloromethane, and the high-performance liquid chromatography with diode array detector (HPLC/DAD) was employed for the residue analysis. The results obtained in the present study show that the limit of detection of both pesticides were found to be $0.01mg\;kg^{-1}$. The recoveries of these pesticides were ranged between 80.6% and 102.5% with coefficient of variation lower than 10%. The biological half-lives of both pesticides were observed in field 1 and field 2 which shows 7.7 and 7.4 days for pyrimethanil and 5.1 and 6.1 days for methoxyfenozide, respectively. Further, the PHRL of pyrimethanil and methoxyfenozide was found to be $8.90mg\;kg^{-1}$ and $5.51mg\;kg^{-1}$, respectively at 10 days before harvest. Consequently, the present study suggests that the residual amounts of both pesticides will be lower than the maximum residue limits (MRLs) when grape is harvested.

Productivity Analysis of Single Truss Tomato Production System for Korean Locations (싱글트러스 토마토 생산시스템의 국내 적용을 위한 생산성 분석)

  • K. C. Ting
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.164-171
    • /
    • 1999
  • Tomato yield and harvest date were analyzed to examine the productivity of Single Truss Tomato Production System(STTPS) for four regions in Korea. It was found that the solar radiation was not sufficient to get the maximum tomato yield during the low light seasons. The difference of total annual yield between Suwon and Jinju regions was about 12kg.m$^{-2}$ . These results indicate that supplemental lights are needed to increase the yield. The availability of natural light should be considered in deciding the locations of tomato greenhouses. The harvest date could be adjusted by using supplemental lighting. The development and implementation of the lighting control strategies are required for reducing electricity expense.

  • PDF

Responses of Rice (Oryza sativa L.) Yield and Percolation Water Qualities to Alternative Irrigation Waters

  • Shin, Joung-Du;Han, Min-Su;Kim, Jin-Ho;Jung, Goo-Bok;Yun, Sun-Gang;Eom, Ki-Cheol;Lee, Myoung-Sun
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.192-196
    • /
    • 2003
  • Objective of this study was to investigate the influences of harvest index and percolation water quality as irrigated the discharge waters from an industrial and a municipal wastewater treatment plants and seawater (1:5 seawater: tap water) as alternative water resources during tillering stage for drought stress. There were four different treatments such as the discharge water from an industrial (textile dyeing manufacture plant) wastewater treatment plant (DIWT), discharge water from the municipal wastewater treatment plant (DMWT), seawater (1:5) and groundwater as a control. For the initial chemical compositions of alternative waters, it appeared that higher concentrations of COD, $Mn^{2+}$, and $Ni^+$ in DIWT were observed than reused criteria of other country for irrigation, and concentrations of $EC_i$, Cl, and $SO_4$ in seawater were higher than that for irrigation. Harvest index was not significantly different between DIWT and DMWT with different irrigation periods in two soil types, but that of seawater (1:5) is decreased with irrigation periods in clay loam soil and not different between 10 days and 20 days of irrigation periods in sandy loam soil. For percolation water qualities, values of sodium adsorption ratio (SAR) are increased with prolonging the irrigation periods of seawater (1:5) and DIWT, but those of DMWT were almost constant through the cultivation periods regardless of the irrigation period in both soil types. EG of percolation waters is eventually increased with prolonging days after irrigation regardless of irrigation periods in both soil types. Therefore, it might be concluded that there was potentially safe to irrigate the discharge water from municipal wastewater treatment plant relative to harvest index, SAR and $EC_i$ values of the ground water through the rice cultivation period at tillering stage for drought period.

Control of Gray Mould(Botrytis cinerea) on Roses by Pre-and Post-harvest Treatments with Agricultural Chemicals (채화 전.후 약제처리에 의한 절화장미 잿빛곰팡이병 발병억제)

  • Lee, Jung-Sup;Han, Kyoung-Suk;Park, Jong-Han;Cheong, Seung-Ryong;Jang, Han-Ik
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.249-253
    • /
    • 2006
  • Several fungicides such as polyoxine B, fludioxonil, tebuconazole, tebuconazole+dichlofluanid, and fenbuconazole were sprayed once a week on roses in greenhouse. Botrytis infection on stalks was reduced by 71-89% after regular fungicide spray. The reduction of conidial inoculum by these treatments is also observed. The rose petal infections were controlled significantly by these fungicides only 2 days after the application. The development of gray mold on rose flowers harvested just after spray of fludioxonil, tebuconazole and tebuconazole+dichlofluanid were reduced compared to untreated control. This beneficial effect was also shown in flowers artificially inoculated with B. cinerea conidia after harvest. Post-harvest treatments by spraying cut flowers with the fungicides such as iprodine plus thiram, tebuconazole+dichlofluanid and polyoxin D reduced disease incidence by 50-55%.

Fat Harvest Using a Closed-Suction Drain

  • Amin, Kavit;Zakeri, Roxana;Mallucci, Patrick
    • Archives of Plastic Surgery
    • /
    • v.43 no.3
    • /
    • pp.288-290
    • /
    • 2016
  • We propose a safe, simple, and novel method to harvest fat using a standard liposuction cannula and a Redivac or alternative closed-suction drain. The authors have used this technique for both 'dry' and 'wet' liposuction. This technique is both easy to perform and cost-effective whilst providing both a silent and relatively atraumatic fat harvest. The lower negative pressure compared with traditional harvesting systems likely preserves fat integrity for lipofilling. This method maximises resources already held within a hospital environment.

Development of Welsh Onion Harvester for Tractor

  • Hong, Sungha;Lee, Kyouseung;Cho, Yongjin;Park, Wonyeop
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.290-298
    • /
    • 2014
  • Purpose: To ascertain the increase of the farm income that predominantly relies on human resources by mechanizing Welsh onion harvesting, a tractor-mounted Welsh onion harvester was developed in this study. Method: An experiment for evaluating harvesting performance was performed for the developed Welsh onion harvester in an actual Welsh onion farm. The harvest performance was evaluated at the tractor running speeds of 5.0 cm/s, 11.4 cm/s and 15.8 cm/s, by comparing the operating efficiency, harvest rate, and damage rate of the Welsh onion harvester. Results: The performance of the harvester was rated as very good, with a 100% harvest rate, regardless of tractor running speed. Furthermore, it is shown that work efficiency of the harvester is expected to increase as the running speed increases. Nonetheless, the damage rate of the harvested Welsh onions at running speeds 5.0 cm/s, 11.4 cm/s, and 15.8 cm/s, increased correspondingly and proportionally to speeds from 4.55% to 6.53% and to 11.29%. The residual amount of soil on the harvested Welsh onions was about 0.24% of their weight showing excellent soil-removal performance of the harvester. Conclusion: The developed Welsh onion harvester is believed to improve the labor productivity and cultivation environment of Welsh onion farmhouses by the mechanization of the harvesting process that is currently associated with the largest amount of labor hours.

Residual Characteristics of Etofenprox and Methoxyfenozide in Chinese Cabbage (Etofenprox와 Methoxyfenozide의 배추 중 잔류특성)

  • Lee, Eun-Young;Noh, Hyun-Ho;Park, Young-Soon;Kang, Kyung-Won;Kim, Joo-Kwang;Jin, Yong-Duk;Yun, Sang-Soon;Jin, Chung-Woo;Han, Sang-Kuk;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.1
    • /
    • pp.13-20
    • /
    • 2009
  • Two insecticides, commonly used for Chinese cabbage, etofenprox and methoxyfenozide, were subjected to a field residue trial to evaluate safeties of the residues at harvest. The pesticides were sprayed onto the crop at recommended and double doses 10 days before the prearranged harvest and then sampling was done at 0, 1, 2, 3, 5, 7, 10, and 12 days after spraying. The amounts of pesticides residues in the crop were analyzed by chromatographic methods. Limits of detection (LODs) of both etofenprox and methoxyfenozide were $0.01mg\;kg^{-1}$ and mean recoveries were $96.76{\pm}2.67$ (CV=2.76%) and $95.84{\pm}2.57%$(CV=2.69%) in case of etofenprox and $103.26{\pm}3.21$ (CV=3.11%) and $94.50{\pm}1.35%$(CV=1.43%) in case of methoxyfenozide, respectively. Biological half-lives of etofenprox and methoxyfenozide were 3.2 and 3.5 days at the recommended dose and 2.7 and 3.5 days at the double dose, respectively. Initial residue levels of the pesticides at the recommended and double doses exceeded their MRLs, but final residue levels of the pesticides in the crop samples at harvest were less than their MRLs. The ratios of the EDI to ADI by intake the crop harvested 10 days after spraying were less than 4% of their ADIs, representing that residue levels of two pesticides at harvest were evaluated as safe.

A MATHEMATICAL MODEL OF A PREY-PREDATOR TYPE FISHERY IN THE PRESENCE OF TOXICITY WITH FUZZY OPTIMAL HARVESTING

  • PAL, D.;MAHAPATRA, G.S.;MAHATO, S.K.;SAMANTA, G.P.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.13-36
    • /
    • 2020
  • In this paper, we have presented a multispecies prey-predator harvesting system based on Lotka-Voltera model with two competing species which are affected not only by harvesting but also by the presence of a predator, the third species. We also assume that the two competing fish species releases a toxic substance to each other. We derive the condition for global stability of the system using a suitable Lyapunov function. The possibility of existence of bionomic equilibrium is considered. The optimal harvest policy is studied and the solution is derived under imprecise inflation in fuzzy environment using Pontryagin's maximal principle. Finally some numerical examples are discussed to illustrate the model.

Development of A Floating Solar Thermoelectric Generator Using A Dome Shaped Fresnel Lens for Ocean Application

  • Seong-Hoon Kim;Jeung-Sang Go
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.1001-1010
    • /
    • 2023
  • To solve the problem that photovoltaic panels can not harvest electrical energy at a cloudy day and night, a floating solar thermoelectric generator (FSTEG, hereafter) is studied. The FSTEG is consisted of a dome shaped Fresnel lens to condense solar energy, a thermoelectric module connected with a heat sink to keep temperature difference, a floating system simulating a wavy ocean and an electrical circuit for energy storage. The dome shaped Fresnel lens was designed to have 29 prisms and its optical performance was evaluated outdoors under natural sunlight. Four thermoelectric modules were electrically connected and its performance was evaluated. The generated energy w as stored in a Li-ion battery by using a DC-DC step-up converter. For the application of ocean environment, the FSTEG was covered by the dome shaped Fresnel lens and sealed to float in a water-filled reservoir. The harvested energy shows a potential and a method that the FSTEG is suitable for the energy generation in the ocean environment.

Design and Implementation of Fruit harvest time Predicting System based on Machine Learning (머신러닝 적용 과일 수확시기 예측시스템 설계 및 구현)

  • Oh, Jung Won;Kim, Hangkon;Kim, Il-Tae
    • Smart Media Journal
    • /
    • v.8 no.1
    • /
    • pp.74-81
    • /
    • 2019
  • Recently, machine learning technology has had a significant impact on society, particularly in the medical, manufacturing, marketing, finance, broadcasting, and agricultural aspects of human lives. In this paper, we study how to apply machine learning techniques to foods, which have the greatest influence on the human survival. In the field of Smart Farm, which integrates the Internet of Things (IoT) technology into agriculture, we focus on optimizing the crop growth environment by monitoring the growth environment in real time. KT Smart Farm Solution 2.0 has adopted machine learning to optimize temperature and humidity in the greenhouse. Most existing smart farm businesses mainly focus on controlling the growth environment and improving productivity. On the other hand, in this study, we are studying how to apply machine learning with respect to harvest time so that we will be able to harvest fruits of the highest quality and ship them at an excellent cost. In order to apply machine learning techniques to the field of smart farms, it is important to acquire abundant voluminous data. Therefore, to apply accurate machine learning technology, it is necessary to continuously collect large data. Therefore, the color, value, internal temperature, and moisture of greenhouse-grown fruits are collected and secured in real time using color, weight, and temperature/humidity sensors. The proposed FPSML provides an architecture that can be used repeatedly for a similar fruit crop. It allows for a more accurate harvest time as massive data is accumulated continuously.