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A MATHEMATICAL MODEL OF A PREY-PREDATOR TYPE

FISHERY IN THE PRESENCE OF TOXICITY WITH FUZZY

OPTIMAL HARVESTING

D. PAL∗, G.S. MAHAPATRA, S.K. MAHATO AND G.P. SAMANTA

Abstract. In this paper, we have presented a multispecies prey-predator
harvesting system based on Lotka–Voltera model with two competing species

which are affected not only by harvesting but also by the presence of a

predator, the third species. We also assume that the two competing fish
species releases a toxic substance to each other. We derive the condition

for global stability of the system using a suitable Lyapunov function. The

possibility of existence of bionomic equilibrium is considered. The optimal
harvest policy is studied and the solution is derived under imprecise infla-

tion in fuzzy environment using Pontryagin’s maximal principle. Finally

some numerical examples are discussed to illustrate the model.
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1. Introduction

Recently, the effects of toxicants on ecological communities is an dynamic field
of research due to the global raise of harmful phytoplankton blooms. Hallam and
Clark [1], Hallam et al. [2], Hallam and De Luna [3], Freedman and Shukla [4]
has started working with ecotoxicological problems. After that many researchers
such as Chattopadhyay [5], Shukla and Dubey [6], Dubey and Hussain [7] and
others elaborately emphasized on the studies of the ecotoxicology mathematical
modeling. Though, the majority of these models deals with general single species
or two-species ecological communities without any special importance on either
terrestrial or aquatic environments.

The multispecies fisheries or marine aquaculture is affected by the damag-
ing effects of toxicants from both environmental and economical point of view.
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Industries are producing a vast amount of toxicants and chemicals such as ar-
senic, lead, cadmium, zinc, copper, iron, mercury, etc. and released in lakes,
rivers and oceans. The waste materials of industries polluted the water of lakes,
rivers and oceans, which affecting the species living therein ([8], [9]). Fish, birds
and mammals that feed on contaminated sea water, their life are affected by
the undesirable effects of this pollution. Therefore, the effect of toxicant to the
environment is causing many species to extinct and several others are on the
verge of extinction. Again, there are many species in the ocean, which produces
a toxin (toxin producing phytoplankton (TPP)) and toxin released by them may
affect the growth of the other species significantly.

Maynard Smith [10] presented the effects of toxic substances in a two species
Lotka–Volterra competitive system by considering that each species produces a
substance toxic to the other only when the other is present. After that Chat-
topadhyay et al. [11] presented a mathematical model based on field observa-
tions in the Talsari Digha region of the Bay of Bengal in West Bengal, India
and showed that toxin producing plankton may act as a biological control for
planktonic blooms. Bandyopadhyay et al. [12], Abbas et al. [13] modified
the Maynard-Smith [10] to a delay differential equation model. Recently, Pal
and Mahapatra [14] have presented two new delay mathematical models (toxic
inhibitory and toxic stimulatory) for allelopathy in the presence of two phyto-
plankton species.

Now we are facing several problems due to the shortage of biological resources.
The main reason behind that the extensive and unregulated harvesting of marine
fish, which lead to the extinction of several species. Also the modern technol-
ogy in fishing power, rate of increase world population and lack of knowledge
of the benefits of the exploited species among the people are all causes of ex-
ploitation of different species of fishes. Therefore to protect the exploitation of
different species of fishes, optimal harvesting policy is very essential. Usually,
one objective in studying marine multi-species problems is to find the condi-
tions/constraints for bionomic equilibrium of the species and also determine the
optimum harvesting policy of the species in order to maximize the present value
of the revenues earned from them maintaining the ecological balance amongst
the species. In 1976 Clark [15] put foundation stone in this field of work. Clark
[15] presented the problem of harvesting only one of the two competing species
in the model of Gause [16]. In the next year, Silvert and Smith [17] presented
a similar problem. Later Mesterton-Gibbons [18], Ragozin and Brown [19], Pal
et al. [20] and others studied the two species prey–predator fishery models for
optimal harvesting of both the species. There are very few harvesting models
with three species—prey, predator system. Kar and Chaudhuri [21] studied a
prey–predator combined harvesting model of two competing species in presence
of a predator.

Again the inflation and discount rates representing the time value of money
are uncertain and fuzzy in nature. Therefore, the instantaneous annual rate of
discount which is the difference of two fuzzy quantity inflation and discount rates
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is also fuzzy in nature. However, there are very few harvesting models exist with
the fuzzy instantaneous annual rate of discount. Sadhukhan et al. [22] presented
the optimal harvest policy under imprecise inflation in fuzzy environment using
Pontryagin’s maximal principle. Recently, Pal and Mahapatra [23] considered
optimal harvesting policy by considering instantaneous annual rate of discount
under fuzziness. However to our knowledge, yet no attempt has been made
to study the optimal harvesting policy with fuzzy instantaneous annual rate of
discount of two competing prey species with a predator where competing prey
species releases a substance toxic to the other species as a biological measure of
deterring the competitor from sharing the food resource. The major assumptions
in the existing works and the current work have been summarised in Table 1.

Papers Number of Effect of Harvesting Environment
species toxicity

Kar and Chaudhuri [21] 3 No Yes Crisp
Sadhukhan et al. [22] 3 No Yes Fuzzy

Abbas et al. [13] 2 Yes No Crisp
Pal et al. [20] 2 No Yes Interval

Pal and Mahapatra [23] 3 No Yes Interval and fuzzy
Mandal et al. [24] 2 Yes No Stochastic

Pal et al. [25] 2 No Yes Fuzzy
Pal and Mahapatra [26] 2 Yes No Interval

Current paper 3 Yes Yes Crisp and fuzzy

In the present paper, we discuss nonselective harvesting of two prey one preda-
tor fishery model, each prey species obeys the logistic law of growth. We also
assume that the two prey fish species compete with each other for using a com-
mon source of food and each species releases a substance toxic to the other
species as a biological measure of deterring the competitor from sharing the
food resource. The predator species is also affected by consuming the toxic re-
lease by the two prey species. The species only belonging to the communities
of algae and planktons releasing toxicant. It is the first time to develop a three
species bioeconomic model of harvesting where the competing fish species has
toxin producing interspecific reaction and predator species indirectly infected by
toxic substances. The local and the global stabilities of the dynamical system
for the model are examined and the existence of a bionomic equilibrium is in-
vestigated. The instantaneous annual rate of discount (δ) [19] is the difference
of two imprecise quantity inflation and discount rates [27] which representing
the time value of money. For this reason, here we consider δ as fuzzy in na-
ture and presented by triangular fuzzy numbers due to intuitive, easy to use,
computationally simple, and useful in promoting representation. Then optimal
control problem is formulated for maximum return of revenue and solved for op-
timum harvesting of the species using Pontryagin’s maximal principle. Lastly,
numerical examples are validate to illustrate the model.
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2. Basic Concept of Fuzzy Set

Zadeh [28] first introduced fuzzy sets as a mathematical way of representing
the vagueness.

Definition 1. Fuzzy set: A fuzzy set Ã in a universe of discourse X is defined

as the following set of pairs Ã =
{(
x, µÃ (x)

)
: x ∈ X

}
. The mapping µÃ : X →

[0, 1] is called the membership function of the fuzzy set Ã and µÃ (x) is called

the membership value or degree of membership of x ∈ X in the fuzzy set Ã.

Definition 2. Triangular fuzzy number: A triangular fuzzy number (TFN)

Ã ≡ (a1, a2, a3) is fuzzy set of the real line R characterized by the membership
function µÃ : R→ [0, 1] as follows

µÃ (x) =


x−a1
a2−a1 , a1 ≤ x ≤ a2,
a3−x
a3−a2 , a2 ≤ x ≤ a3,

0, otherwise

Definition 3. α-cut of fuzzy number: The α-cut of a fuzzy number Ã is a
crisp set and it is defined by Aα =

{
x : µÃ (x) ≥ α

}
, α ∈ (0, 1]. For α = 0 the

support of Ã is defined as A0 = Supp
(
Ã
)

=
{
x ∈ R, µÃ (x) > 0

}
.

As per definition of TFN the α-cut is a bounded closed internal [al (α) , ar (α)],
where al (α) = inf

{
µÃ (x) ≥ α

}
= a1+α (a2 − a1) and ar (α) = sup

{
µÃ (x) ≥ α

}
= a3 − α (a3 − a2).

3. Solution methodology of optimization problem

Weighted sum method
In weighted sum method [29], a utility function Yi(Ji) is defined for each

objective depending on the importance of Ji compared to the other objective
functions. Then a total or overall utility function Y is defined, for example, as:

Y (x) =
∑
i=L,R

Yi(Ji (x)). (1)

The solution vector x∗ is then found by maximizing the total utility Y (x) subject
to the underlying constraints.

We may take a suitable form of the Eq. (1) for maximization formulation as:

Y (x) =
∑
i=L,R

wiJi (x) ,

subject to
∑
i=L,R

wi = 1 and 0 < wL, wR < 1.
(2)

Here wL and wR are the weights of the objective functions. Since the maximum
of the above problem does not change if all the weights are multiplied by a
constant, it is the usual practice to choose weights such that their sum is one.
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4. Formulation of the Model

We assume two fish species which compete with each other for the use of a
common resource and both of them are subjected to continuous harvesting. In
addition to competition between the two fish species, each species produces a
substance toxic to the other only when the other is present. There is a predator
(for example a whale) feeding on both of them. It is assumed that the predator
population is not harvested (for example whale harvesting has been prohibited).
Thus the interaction between the harvesting agency and the predator is through
the third party, namely, the prey. Also the prey is directly infected by toxic
substance while the predator feeding on this infected prey is indirectly affected by
the toxic substance. Since we are not making a case study in respect of a specific
prey-predator community, we have opted for the logistic growth function for both
the prey species and for simplicity, the feeding rate of the predator species is
assumed to increase linearly with prey density. Hence, governing equations of
the system can be written as

dx1

dt = r1x1

(
1− x1

k1

)
− α12x1x2 − α13x1x3 − γ1x21x2 − q1Ex1,

dx2

dt = r2x2

(
1− x2

k2

)
− α21x1x2 − α23x2x3 − γ2x1x22 − q2Ex2,

dx3

dt = α31x1x3 + α32x2x3 − (1 + γ1 + γ2)x23,

(3)

with initial densities x1 (0) > 0, x2 (0) > 0, x3 (0) > 0. Where x1 (t), x2 (t) and
x3 (t) denote the population densities of the two competing species and predator
species at any time t respectively. r1, r2, α12, α13, α21, α23, α31, α32, γ1, γ2,
k1and k2 are all positive constants. Here, r1, r2 represent the biotic potentials
and k1, k2 are the carrying capacities of the two prey species. The two fish
species compete for the use of an external resource as food which helps each
species to grow, as per the logistic law of growth, in the absence of the other
species. α12, α21 are the coefficients of interspecific competition between the
species. α13, α23 are the predation coefficients and α31, α32 are the conversion
parameters. γ1 and γ2 are the co-efficients of toxicity. E is the harvesting effort.
q1, q2 are the catchability coefficients of x1 and x2 species respectively.

5. Boundedness of the System

Boundedness of a system guarantees its validity. The following theorem en-
sures the boundedness of the system (3).

Theorem 1. Every solution of system (3) with initial conditions x1 (0) > 0,
x2 (0) > 0, x3 (0) > 0 is positive and bounded for all t > 0.

Proof. Since the right hand side of system (3) is completely continuous and
locally Lipschitzian on C (space of continuous functions), the solution
(x1 (t) , x2 (t) , x3 (t)) of (3) with initial conditions x1 (0) > 0, x2 (0) > 0, x3 (0) >
0 exists and is unique on [0,ξ), where 0 < ξ < +∞. From the first equation of
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(3), we have

x1 (t) = x1 (0)

[
exp

t∫
0

{
r1

(
1− x1 (s)

k1

)
− α12x2 (s)− α13x3 (s)

− γ1x1 (s)x2 (s)− q1E
}
ds

]
> 0.

(4)

From the second equation of (3), we have

x2 (t) = x2 (0)

[
exp

t∫
0

{
r2

(
1− x2 (s)

k2

)
− α21x1 (s)− α23x3 (s)

− γ2x1 (s)x2 (s)− q2E
}
ds

]
> 0.

Similarly, from the third equation of (3), we have

x3 (t) = x3 (0)

exp

t∫
0

{α31x1 (s) + α32x2 (s)− (1 + γ1 + γ2)x3 (s)} ds

 > 0.

From the first two equations of (3), we have

dxi
dt
≤ rixi

(
1− xi

ki

)
, i = 1, 2,

which implies lim
t→∞

supxi (t) ≤ ki. Therefore, from the third equation of (3), we

have:
dx3
dt
≤ r3x3 − γx23, (5)

where r3 = α31k1 + α32k2. Inequation (5) can be written as

dx3
dt
≤ r3x3

(
1− x3

k3

)
, (6)

where k3 = r3
γ . From (6): we have lim

t→∞
supx3 (t) ≤ k3. Therefore, the theorem

is proved. �

6. The Steady States and Their Stability

The steady states of the system (3) are P1 (0, x2, x3), P2

(
=
x1, 0,

=
x3

)
and

P3 (x∗1, x
∗
2, x
∗
3) where

x2 =
γ (r2 − q2E)(
γ r2k2 + α23α32

) , x3 =
α32 (r2 − q2E)(
γ r2k2 + α23α32

)
and

=
x1 =

γ (r1 − q1E)(
γ r1k1 + α13α31

) ,
=
x3 =

α31 (r1 − q1E)(
γ r1k1 + α13α31

)
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where γ = (1 + γ1 + γ2). We assume here that the interior equilibrium point
(x∗1, x

∗
2, x
∗
3) exists. The equilibrium point P1 exists if E < r2

q2
and P2 exists if

E < r1
q1

.

6.1. Local Stability Analysis. The variational matrix corresponding to
P1 (0, x2, x3) is given by

V (0, x2, x3) =

r1 − α12x2 − α13x3 − q1E 0 0
−α21x2 − γ2x22 − r2

k2
x2 −α23x2

α31x3 α32x3 −γx3


The characteristic equation of the variational matrix V (0, x2, x3) is given by

(r1 − α12x2 − α13x3 − q1E − λ)

×
{
λ2 + λ

(
r2
k2
x2 + γx3

)
+

(
γ
r2
k2

+ α23α32

)
x2x3

}
= 0.

(7)

One root of the equation (7) i.e., one of the eigenvalues of the variational matrix
V (0, x2, x3) is given by r1−α12x2−α13x3− q1E. This eigenvalue is negative or

positive according to whether r1
q1

is less or greater than (α12x2+α13x3)
q1

+ E. The

other two eigenvalues are given by the roots of the following quadratic equation:

λ2 + λ

(
r2
k2
x2 + γx3

)
+

(
γ
r2
k2

+ α23α32

)
x2x3 = 0. (8)

The sum of the roots of the equation (8) = −
(
r2
k2
x2 + γx3

)
which is always

negative and the product of the roots =
(
γ r2k2 + α23α32

)
x2x3, which is always

positive.Therefore, the roots of (8) are real and negative or complex conjugates
having negative real parts. Thus P1 is asymptotically stable only if

r1
q1
<

(α12x2 + α13x3)

q1
+ E

We have already found that the steady state P1 exists if E < r2
k2

. Hence the
condition for asymptotic stability of P1becomes

r1
q1
− (α12x2 + α13x3)

q1
< E <

r2
q2

(9)

Similarly, the axial equilibrium P2

(
=
x1, 0,

=
x3

)
is locally asymptotically stable if

r2
q2
−
(
α21

=
x1+α23

=
x3

)
q2

< E < r1
q1

. Now, the characteristic equation of the variational

matrix of system (3) at P3 (x∗1, x
∗
2, x
∗
3) is given by

λ3 +A1λ
2 +A2λ+A3 = 0 (10)
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where

A1 = −a11 − a22 − a33,
A2 = a11a22 + a11a33 + a22a33 − a23a32 − a31a13 − a12a21,
A3 = a11a23a32 + a12a21a33 + a13a22a31 − a11a22a33 − a13a21a32 − a12a23a31,

and a11 = −
(
r1x

∗
1

k1
+ γ1x

∗
1x
∗
2

)
, a12 = − (α12 + γ1x

∗
1)x∗1, a13 = −α13x

∗
1, a21 =

− (α21 + γ2x
∗
2)x∗2, a22 = −

(
r2x

∗
2

k2
+ γ2x

∗
1x
∗
2

)
, a23 = −α23x

∗
2, a31 = α31x

∗
3, a32 =

α32x
∗
3 and a33 = −γx∗3

Here, by the Routh–Hurwitz criterion ([30]) it follows that all eigenvalues of
the characteristic equation (10) has negative real part if and only if

A1 > 0, A3 > 0 and A1A2 −A3 > 0 (11)

and then P3 (x∗1, x
∗
2, x
∗
3) is locally asymptotically stable. Hence we have the

following result:

Theorem 2. The interior equilibrium P3 (x∗1, x
∗
2, x
∗
3) of the system (3) is locally

asymptotically stable if condition (11) is satisfied.

6.2. Global Stability Analysis. In this section, we shall prove the global
stability of the system (3) by constructing a suitable Lyapunov function

Theorem 3. The interior equilibrium point P3 (x∗1, x
∗
2, x
∗
3) is globally asymp-

totically stable if

(i) {α12 + α21 + γ1x
∗
1 + γ2x

∗
2}

2
>

4r1r2
k1k2

(ii)α13 = α31 (iii)α23 = α32

Proof. Let us consider a suitable Lyapunov function:

V (x1, x2, x3) = (x1 − x∗1)− x∗1 log

(
x1
x∗1

)
+ (x2 − x∗2)− x∗2 log

(
x2
x∗2

)
+ (x3 − x∗3)− x∗3 log

(
x3
x∗3

)
.

It can be easily verified that the function V is zero at the equilibrium (x∗1, x
∗
2, x
∗
3)

and is positive for all other positive values of x∗1, x∗2 and x∗3. The time derivative
of V along with the solutions of Eq. (3) is

dV

dt
=
x1 − x∗1
x1

dx1
dt

+
x2 − x∗2
x2

dx2
dt

+
x2 − x∗3
x3

dx3
dt

= −
[

(x1 − x∗1)
2

(
r1
k1

+ γ1x2

)
+ (α12 + α21 + γ1x

∗
1 + γ2x

∗
2)

× (x1 − x∗1) (x2 − x∗2) + (x2 − x∗2)
2

(
r2
k2

+ γ2x1

)
+ (α23 − α32) (x2 − x∗2) (x3 − x∗3) + γ (x3 − x∗3)

2

]
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The right hand side is a quadratic form in the variables (x1 − x∗1) and (x2 − x∗2)
and (x3 − x∗3) which is negative definite if the matrix

r1
k1

+ γ1x2
(α12+α21+γ1x

∗
1+γ2x

∗
2)

2
(α13−α31)

2
(α12+α21+γ1x

∗
1+γ2x

∗
2)

2
r2
k2

+ γ2x1
(α23−α32)

2
(α13−α31)

2
(α23−α32)

2 γ


is positive definite. Thus dV

dt ≤ 0 if α13 = α31, α23 = α32 and

4
(
r1
k1

+ γ1x2

)(
r2
k2

+ γ2x1

)
≥ (α12 + α21 + γ1x

∗
1 + γ2x

∗
2)

2
. This inequality is of

the form Ax1x2 + Bx1 + Cx2 + D ≥ 0, where A = 4γ1γ2, B = 4r1γ2

k1
, C =

4r2γ1

k2
and D = 4r1r2

k1k2
− (α12 + α21 + γ1x

∗
1 + γ2x

∗
2)

2
. Comparing with the general

equation of second degree, it can be easily shown that Ax1x2+Bx1+Cx2+D = 0
represent a rectangular hyperbola with asymptotes parallel to the axes. Now for
x1 = 0 we have:

x2 =
(α12 + α21 + γ1x

∗
1 + γ2x

∗
2)

2 − 4r1r2
k1k2

4r2γ1

k2

and for x2 = 0, we have

x1 =
(α12 + α21 + γ1x

∗
1 + γ2x

∗
2)

2 − 4r1r2
k1k2

4r1γ2

k1

Therefore, the curve will have a branch in the positive quadrant if:
(α12 + α21 + γ1x

∗
1 + γ2x

∗
2)

2
> 4r1r2

k1k2
. Hence the equilibrium point P3 (x∗1, x

∗
2, x
∗
3)

is globally asymptotically stable if the conditions (i) {α12 + α21 + γ1x
∗
1 + γ2x

∗
2}

2

> 4r1r2
k1k2

(ii)α13 = α31 (iii)α23 = α32 hold. This completes the proof. �

7. Bionomic Aspect of the Model

The term bionomic equilibrium is a combination of the concepts of biological
equilibrium as well as economic equilibrium. As we already saw, a biological

equilibrium is given by
·
x1 = 0,

·
x2 = 0 and

·
x3 = 0. The economic equilibrium is

said to be achieved when TR (the total revenue obtained by selling the harvested
biomass) equals TC (the total cost for the effort devoted to harvesting).

Let c is the constant fishing cost per unit effort, p1 constant price per unit
biomass of the first prey species, and p1 is the constant price per unit biomass
of the second prey species.

The economic rent (net revenue) at any time is given by

π (x1, x2, x3, E) = TR− TC = (p1q1x1 + p2q2x2 − c)E. (12)

Now,

·
x1 = 0⇒ x1 = 0 or E =

r1
q1
− r1
k1q1

x1 −
α12

q1
x2 −

α13

q1
x3 −

γ1
q1
x1x2
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·
x2 = 0⇒ x2 = 0 or E =

r2
q2
− r2
k2q2

x2 −
α21

q2
x1 −

α23

q2
x3 −

γ2
q2
x1x2

·
x3 = 0⇒ x3 = 0 or x3 =

1

γ
(α31x1 + α32x2)

Hence the nontrivial biological equilibrium solution occurs at a point on the line

(
r1
k1q1
− α21

q2

)
x1 −

(
r2
k2q2
− α12

q1

)
x2

+
(
γ1

q1
− γ2

q2

)
x1x2 +

(
α13

q1
− α23

q2

)
x3 +

(
r2
q2
− r1

q1

)
= 0

α31x1 + α32x2 − γx3 = 0

(13)

where 0 ≤ x1 ≤ k1 and 0 ≤ x2 ≤ k2.
The equilibrium line (13) meets the plane x1 = 0 at (0, x̃2, x̃3) where

x̃2 =

r2
q2
− r1

q1(
r2
k2q2

+ α23α32

γq2

)
−
(
α12

q1
+ α13α32

γq1

) and x̃3 =
α32

γ
x̃2

provided either

(a)
r2
q2
> max

{
k2α12

q1
,
r1
q1

}
and

α23

q2
>
α13

q1

(b)
r2
q2
< min

{
k2α12

q1
,
r1
q1

}
and

α23

q2
<
α13

q1

Similarly, (13) meets the plane x2 = 0 at (x̃1, 0, x̃3) where

x̃1 =

r2
q2
− r1

q1(
α21

q2
+ α23α31

γq2

)
−
(

r1
k1q1

+ α13α31

γq1

) and x̃3 =
α31

γ
x̃1

provided either

(c)
r1
q1
> max

{
k1α21

q2
,
r2
q2

}
and

α13

q1
>
α23

q2
or

(d)
r1
q1
< min

{
k1α21

q2
,
r2
q2

}
and

α13

q1
<
α23

q2

The bionomic equilibrium of the open-access fishery is determined by Eq. (13)
together with the condition:

π (x1, x2, x3, E) = (p1q1x1 + p2q2x2 − c)E = 0, (14)

we refer to Eq. (14) as the zero profit line. Therefore, the bionomic equilibrium
R (x1∞, x2∞, x3∞) will be the point of intersection (if it exists) of (13) and the
zero profit line (14).

Eliminating x2 and x3 from Eqs. (13) and (14), we get:

A4x
2
1 +B2x1 + C2 = 0, (15)
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where

A4 =

(
γ2
q2
− γ1
q1

)
p1q1
p2q2

,

B2 =
p1q1
p2q2

(
r2
k2q2

− α12

q1

)
−
{
α21

q2
− r1
k1q1

+
c

p2q2

(
γ2
q2
− γ1
q1

)
+

(
α23

q2
− α13

q1

)(
α31

γ
− α32p1q1

γp2q2

)}
and

C2 =
c

p2q2

(
α12

q1
− r2
k2q2

)
+

(
r2
q2
− r1
q1

)
+

cα32

γp2q2

(
α13

q1
− α23

q2

)
In Eq. (15), we have sum of the roots = −

(
B2

A4

)
and product of the roots

= −
(
C2

A4

)
.

Now the following cases may arise.
γ2

q2
> γ1

q1
In this case A4 > 0. We have one positive root when C2 < 0. Then we must

have:
k2α12

q2
<
r2
q2
<
r1
q1

and
α13

q1
<
α23

q2
γ2

q2
< γ1

q1
In this case A4 > 0. We have one positive root when C2 > 0. Then we must

have: k2α12

q2
< r2

q2
< r1

q1
and α13

q1
< α23

q2
In both cases, p2q2x2∞ = c− p1q1x1∞. Therefore,

x2∞ =
c− p1q1x1∞

p2q2
> 0, provided x1∞ <

c

p1q1
and x3∞ =

α31x1∞ + α32x2∞
γ

8. Optimal Harvesting Policy under Fuzziness

Let k̃ and r̃ be the inflation and discount rates representing the time value
of money and these are fuzzy in nature (see Refs [22], [23], [31]). The present
value J of continuous time-stream of revenues is given by

J̃ =

∞∫
0

e−δ̃t {p1q1x1 + p2q2x2 − c}E (t) dt (16)

where δ̃ = r̃ − k̃ is the fuzzy net discount rate of inflation and considered as

triangular fuzzy number i.e., δ̃ = (δ1, δ2, δ3). Our problem is to maximise J̃
subject to the state equations (3) by invoking Pontryagin’s maximal principle
([32]). The control variable E (t) is subjected to the constraints 0 ≤ E (t) ≤
Emax, so that Vt = [0, Emax] is the control set. Following Maiti and Maiti

[27], Sadhukhan et al. [22] and Pal and Mahapatra [23] the fuzzy number δ̃ =
(δ1, δ2, δ3) is expressed as an interval number [δL, δR] where δL = δ1+α (δ2 − δ1),
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δR = δ3−α (δ3 − δ2) and 0 ≤ α ≤ 1. Now, the corresponding integral (16) which
is to be maximized is expressed as

Max [JL, JR] =

∞∫
0

e−[δL,δR]t {p1q1x1 + p2q2x2 − c}E (t) dt, (17)

where

JL =

∞∫
0

e−δRt {p1q1x1 + p2q2x2 − c}E (t) dt,

JR =

∞∫
0

e−δLt {p1q1x1 + p2q2x2 − c}E (t) dt.

(18)

We can write
MaxJ = Max [JL, JR] = w1JL + w2JR (19)

where w1, w2 are two weights such that w1+ w2 = 1 and w1, w2 ≥ 0.The
Hamiltonian is given by

H =
(
w1e

−δRt + w2e
−δLt

)
(p1q1x1 + p2q2x2 − c)E

+ λ1

(
r1x1

(
1− x1

k1

)
− α12x1x2 − α13x1x3 − γ1x21x2 − q1Ex1

)
+ λ2

(
r2x2

(
1− x2

k2

)
− α21x1x2 − α23x2x3 − γ2x1x22 − q2Ex2

)
+ λ3

(
α31x1x3 + α32x2x3 − γx23

)
,

(20)

where λi = λi (t) (i = 1, 2, 3) are the adjoint variables. The adjoint equations
are

dλ1
dt

= − ∂H
∂x1

,
dλ2
dt

= − ∂H
∂x2

,
dλ3
dt

= − ∂H
∂x3

(21)

Therefore,

dλ1
dt

= −
{
p1q1

(
w1e

−δRt + w2e
−δLt

)
E

+ λ1

(
r1 −

2x1
k1
− α12x2 − 2γ1x1x2 − q1E

)
− λ2

(
α21x2 + γ2x

2
2

)
+ α31x3λ3

} (22)

dλ2
dt

= −
{
p2q2

(
w1e

−δRt + w2e
−δLt

)
E − λ1

(
α12x1 + γ1x

2
1

)
+ λ2

(
r2 −

2x2
k2
− α21x1 − α23x3 − 2γ2x1x2 − q2E

)
+ α32x3λ3

} (23)

dλ3
dt

= −{−α13x1λ1 − α23x2λ2 + λ3 (α31x1 + α32x2 − 2γx3)} . (24)
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At the equilibria (22)–(24) become

dλ1
dt

= λ1

(
r1
k1

+ γ1x1

)
x2 + λ2 (α21 + γ2x2)x2

− λ3α31x3 − p1q1
(
w1e

−δRt + w2e
−δLt

)
E,

(25)

dλ2
dt

= λ1 (α12 + γ1x1)x1 + λ2

(
r2
k2

+ γ2x1

)
x2

− λ3α32x3 − p2q2
(
w1e

−δRt + w2e
−δLt

)
E,

(26)

dλ3
dt

= λ1α13x1 + λ2α23x2 + λ3γx3. (27)

Now, by eliminating λ1 and λ2 from (25)–(27), we get a reduced differential
equation for λ3 as(

a0D
3 + a1D

2 + a2D + a3
)
λ3 = M3Le

−δRt +M3Re
−δLt, (28)

where D ≡ d
dt , a0 = 1, a1 = −

(
r1x1

k1
+ r2x2

k2
+ (γ1 + γ2)x1x2

)
,

a2 =
{(

r1
k1

+ γ1x2

)(
r2
k2

+ γ2x1

)
− (α21 + γ1x1)

}
x1x2

+
{
γ
(
r1
k1

+ γ1x2

)
+ α13α31

}
x1x3 + α23α32x2x3,

a3 =

[
γ
(
r1
k1

+ γ1x2

)(
r2
k2

+ γ2x1

)
+ α23α32

(
r1
k1

+ γ1x2

)
−γ (α21 + γ2x2) (α12 + γ1x1)− α13α32 (α21 + γ2x2)

−α23α31 (α12 + γ1x1) + α13α31

(
r2
k2

+ γ2x1

)]
x1x2x3

.

M3L = w1E
[
p1q1{α23δRx2 + {−α13 (α21 + γ2x2) +

(
r1
k1

+ γ1x2

)
α23}x1x2}

+p2q2{α13δRx1 + {−α23 (α12 + γ1x1) +
(
r2
k2

+ γ2x1

)
α13}x1x2}

]
,

M3R = w2E
[
p1q1{α23δLx2 + {−α13 (α21 + γ2x2) +

(
r1
k1

+ γ1x2

)
α23}x1x2}

+p2q2{α13δLx1 + {−α23 (α12 + γ1x1) +
(
r2
k2

+ γ2x1

)
α13}x1x2}

]
The complete solution of (28) is

λ3 = A1e
m1t +A2e

m2t +A3e
m3t +

M3L

NL
e−δRt +

M3R

NR
e−δLt, (29)

where Ai (i = 1, 2, 3) are arbitrary constants and mi(i = 1, 2, 3) are the roots of
the auxiliary equations a0m

3 + a1m
2 + a2m+ a3 = 0 and

NL = −
(
a0δ

3
R − a1δ

2
R + a2δR − a3

)
6= 0, NR = −

(
a0δ

3
L − a1δ

2
L + a2δL − a3

)
6=

0. It is clear from (29) that λ3 is bounded if and only if mi < 0 (i = 1, 2, 3) or
the Ai’s are identically equal to zero. It being very difficult to check whether
mi < 0, we take Ai = 0 (i = 1, 2, 3). Then

λ3 =
M3L

NL
e−δRt +

M3R

NR
e−δLt.
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Similarly, we get

λ2 =
M2L

NL
e−δRt +

M2R

NR
e−δLt and λ1 =

M1L

NL
e−δRt +

M1R

NR
e−δLt,

where M2L = w1E[p1q1{x1(α12 + γ1x1)δR + (γ((α12 + γ1x1) +α13α23)x1x3)}−
p2q2{δ2R + (γx3 + x1( r1k1 + γ1x2))δR + (γ( r1k1 + γ1x2) + α13α23)x1x3}, M2L =

w2E[p1q1{x1(α12+γ1x1)δL+(γ((α12+γ1x1)+α13α23)x1x3)}−p2q2{δ2L+(γx3+
x1( r1k1 + γ1x2))δL + (γ( r1k1 + γ1x2) + α13α23)x1x3}, M1L = w1E[p2q2{x2(α21 +

γ2x2)δR+(γ((α21+γ2x2)+α23α31)x2x3)}−p1q1{δ2R+(γx3+x2( r2k2 +γ2x1))δR+

(γ( r2k2 +γ2x1)+α23α31)x2x3} and M1R = w1E[p2q2{x2(α21+γ2x2)δL+(γ((α21+

γ2x2) + α23α31)x2x3)} − p1q1{δ2L + (γx3 + x2( r2k2 + γ2x1))δL + (γ( r2k2 + γ2x1) +

α23α31)x2x3}.
We find the shadow prices λie

δLt and λie
δRt (i = 1, 2, 3) of the three species

remain bounded as t → ∞ and hence satisfy the transversality condition at ∞
[15]. The Hamiltonian in (20) must be maximised for E ∈ [0, Emax]. Assuming
that the control constraints 0 ≤ E ≤ Emax are not binding (that is, the optimal
equilibrium does not occur either at E = 0 or E = Emax) so we consider the
singular control

∂H
∂E =

(
w1e

−δRt + w2e
−δLt

)
(p1q1x1 + p2q2x2 − c)− λ1q1x1 − λ2q2x2 = 0,

⇒
(
w1e

−δRt + w2e
−δLt

)
(p1q1x1 + p2q2x2 − c) = λ1q1x1 + λ2q2x2,

(30)
or (

w1e
−δRt + w2e

−δLt
) dπ
dE

= λ1q1x1 + λ2q2x2.

This indicates that the total user cost of harvest per unit effort must be equal
to the discounted value of the future profit at the steady state effort level [15].
Substituting λ1 and λ2 into (30) we get

MLe
−δRt +MRe

−δLt = c
(
w1e

−δRt + w2e
−δLt

)
, (31)

where ML =
(
p1w1 − M1L

NL

)
q1x1 +

(
p2w1 − M2L

NL

)
q2x2 and

MR =
(
p1w2 − M1R

NR

)
q1x1 +

(
p2w2 − M2R

NR

)
q2x2.

From equation (31), we have

e−δLt
(
MLe

−(δR−δL)t +MR

)
= ce−δLt

(
w1e

−(δR−δL)t + w2

)
⇒
(
MLe

−(δR−δL)t +MR

)
= c

(
w1e

−(δR−δL)t + w2

) (32)

when [δL, δR] → ∞ ⇒ δL → ∞, δR → ∞ and (δR − δL) is tending to ∞. So

when δ̃ →∞ then (32) becomes

MR = cw2 (33)

The value of E at the interior equilibrium is given by

E =
r1
q1
− r1x1
q1k1

−α12

q1
x2−

α13

q1
x3−

γ1
q1
x1x2 =

r2
q2
− r2x2
q2k2

−α21

q2
x1−

α23

q2
x3−

γ2
q2
x1x2

(34)
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substituting the value of E in the expressions for M1L, M1R, M2L, M2R then
solving (33) and (3) to obtain the optimal equilibrium solution x1 = x1δ̃, x1 =

x1δ̃, x3 = x3δ̃ for a given value of δ̃. Since MiR

NR
= O

(
δ−1L
)
, i = 1, 2. So MiR

NR
→ 0

as δL →∞. Therefore equ. (32) becomes

p1w2q1x1 + p2w2q2x2 = cw2,⇒ p1q1x1 + p2q2x2 = c. (35)

Therefore we have,
π (x1∞, x2∞, x3∞, E∞) = 0,

This indicates that, an infinite inflation rate leads to complete dissipation of
economic revenue. Again,

MR − cw2 =
(
p1w2 − M1R

NR

)
q1x1 +

(
p2w2 − M2R

NR

)
q2x2 − cw2 = 0

⇒ π = 1
w2NR

[M1Rq1x1 +M2Rq2x2]

where we note that each of M1R, M2R are of O
(
δ2L
)

and NR is of O
(
δ3L
)

so that
π is a decreasing function of δL (≥ 0). We therefore conclude δL = 0 leads to
the maximization of π .

9. Numerical Simulation

Numeric results of the proposed model are verified in the following four cases
(i) γ1 < γ2 (ii) γ1 > γ2 (iii) γ1 = γ2 6= 0 (iv) γ1 = γ2 = 0. In order to
illustrate steady states of the model, bionomic equilibria and optimal harvesting
at equilibrium, we present two numerical examples. Parameters of the system
(3) are taken as follows: r1 = 3.2, r2 = 2.5, k1 = 100, k2 = 80, α12 = 0.006,
a13 = 0.04, a21 = 0.002, a23 = 0.03, a31 = 0.12, a32 = 0.31, E = 15, q1 = 0.02,
q2 = 0.02, γ1 = 0.008, γ2 = 0.004 (γ1 > γ2), γ1 = 0.004, γ2 = 0.008 (γ1 < γ2),
γ1 = 0.004, γ2 = 0.008 (γ1 = γ2 6= 0) in appropriate units.

The non-trivial steady states and their nature of the proposed prey–predator
model for different effects of toxicity is presented in Table 2.

Table 2: Equilibrium point, eigenvalues and their nature of system (3)

Toxicity coefficient Equilibrium point Eigenvalues Nature

γ1> γ2 (9.25, 27.74, 9.59) −27.93,−1.52,−0.28 stable

γ1< γ2 (53.23, 4.08, 7.56) −7.03,−4.15,−0.91 stable

γ1= γ2 6= 0 (27.96, 7.74, 5.66) −0.49,−4.9± 0.7i stable

γ1= γ2= 0 (55.51, 46.59, 21.10) −20.30,−2.58,−1.44 stable

From Table 2, we observe that if the toxicity coefficient γi (i = 1, 2) of one
competing species is greater than the other species, the corresponding steady
state level of that species is lower than other species as expected. Also, when
γi (i = 1, 2) are equal but not equal to zero, the steady state level of first prey
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species is much more greater than the second prey species and the predator
species. Again, in the absence of toxic substances (i.e., γ1= 0, γ2= 0) the steady
state level of all the species are increases which is biologically relevant. It is
also found from Table 2 that in any case the eigenvalues of the characteristic
polynomial of system (3) are always negative. Hence, by Theorem 5.3 the interior
equilibrium point (x∗1, x

∗
2, x
∗
3) is always stable.

Figure 1. Time series plot of the three species population
(x1,x2, x3) with different kinds of toxicity and initial condition
(x1 (0) , x2 (0) , x3 (0)) = (0.05, 0.05, 0.05)

From Fig. 1, we notice that in any case (γ1> γ2, γ1< γ2, γ1= γ2 6= 0, γ1= γ2= 0)
as the time increases population converges to their equilibrium. The phase-space
trajectories corresponding to the stabilities of the populations for different initial
conditions is presented in Fig. 2.

Figure 2. Phase portrait of the system (3) with different effect
of toxicity beginning with different initial levels

The trajectories in Fig. 2 specify that the steady state (x∗1, x
∗
2, x
∗
3), in any

case, is globally asymptotically stable for different initial populations. Taking
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fixed the coefficient γ1 in certain level, the variation of the three species with
respect to γ2 is depicted in Fig 3.

Figure 3. Variations of species with γ2 when γ1 fixed at (a)
0.008 and (b) 0.004

Fig. 3 shows that, as γ2 increases with fixed γ1at 0.008 or 0.004 the second
prey species population (x2) goes to extinct, i.e. the system approaches to the

steady state level P2

(
=
x1, 0,

=
x3

)
. Similarly if converse case is happened, i.e.,

taking γ2 = 0.008 or 0.004 then the variation of the three species with respect
to γ1 is presented through Fig 4.

Figure 4. Variations of species with γ1 when γ2 fixed at (a)
0.008 and (b) 0.004

From Fig. 4 we observe that, as γ1 increases the first prey species (x1)
gradually decreases and goes to extinct, i.e. the system approaches to the steady
state level P1 (0, x2, x3). Again the dynamical behaviour of the system (3) for
different kinds of toxicity with the given values of the parameters is presented
through Fig. 5
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Figure 5. Dynamical behaviour of the three species population
(x1, x2, x3) with respect to E with given values of biological
parameters and q1 = 0.02, q2 = 0.02 for different effects of
toxicity

Figure 5 shows the dynamical behaviour of the three species population
(x1, x2, x3) with respect to the harvesting effort E with given values of the biolog-
ical parameters and the initial condition (x1 (0) , x2 (0) , x3 (0)) = (0.05, 0.05, 0.05).
This figure shows that the equilibrium point changes for different values of E.

Taking the same values of the parameters together with p1 = 4, p2 = 6, c = 3,
the bionomic equilibrium R (x1∞, x2∞, x3∞) for different kinds of toxicant effort
are presented in Table 3. The nontrivial steady state is the same as in Table 2.

Table 3: Bionomic equilibrium for different efforts of toxicity of system (3)

Toxicity coefficient R (x1∞, x2∞, x3∞)
γ1> γ2 (10.68, 17.80, 6.74)
γ1< γ2 (34.07, 2.29, 4.74)

γ1= γ2 6= 0 (27.29, 6.80, 5.30)
γ1= γ2= 0 (27.27, 6.81, 5.38)

From the Tables 2 and 3 as presented above, we may note the following points:
(i) For γ1> γ2, the bionomic population level for the first species x1∞ = 10.68 is
higher than the corresponding steady state level x∗1 = 9.25. The bionomic pop-
ulation level for the second species x2∞ = 17.80 is lower than the corresponding
steady state level x∗2 = 27.74. The bionomic population level for the third species
x3∞ = 6.74 is lower than the corresponding steady state level x∗3 = 9.59 (ii) For
γ1< γ2, the bionomic population level for the first species x1∞ = 34.07 is lower
than the corresponding steady state level x∗1 = 53.23. The bionomic popula-
tion level for the second species x2∞ = 2.29 is lower than the corresponding
steady state level x∗2 = 4.08. The bionomic population level for the third species
x3∞ = 4.74 is lower than the corresponding steady state level x∗3 = 7.56 (iii) For
γ1= γ2 6= 0, the bionomic population level for the first species x1∞ = 27.29 is
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lower than the corresponding steady state level x∗1 = 53.23. The bionomic pop-
ulation level for the second species x2∞ = 6.80 is lower than the corresponding
steady state level x∗2 = 4.08. The bionomic population level for the third species
x3∞ = 5.30 is lower than the corresponding steady state level x∗3 = 7.56 (iv)
For γ1= γ2= 0, the bionomic population level for the first species x1∞ = 27.27
is much more lower than the corresponding steady state level x∗1 = 55.51. Sim-
ilarly, the bionomic population level for the second species x2∞ = 6.81 is much
more lower than the corresponding steady state level x∗2 = 46.59. Again, the
bionomic population level for the third species x3∞ = 5.38 is also much more
lower than the corresponding steady state level x∗3 = 21.10 (v) Intensities of re-
leasing toxins by the two species alter the steady state and bionomic equilibrium
levels of the system (3).

To illustrate optimal equilibrium with fuzzy instantaneous annual rate of dis-
count we consider the values of the parameters as follows: r1 = 2.4, r2 = 2.5,
k1 = 80, k2 = 60, α12 = 0.006, a13 = 0.004, a21 = 0.002, a23 = 0.03, a31 = 0.12,

a32 = 0.31, q1 = 0.5, q2 = 0.5, p1 = 2, p2 = 8, c = 10, δ̃ = (0.08, 0.09, 0.10),
γ1 = 0.0008, γ2 = 0.0004 (γ1 > γ2), γ1 = 0.0004, γ2 = 0.0008 (γ1 < γ2),
γ1 = 0.0004, γ2 = 0.0008 (γ1 = γ2 6= 0) in appropriate units.

The optimal equilibrium and corresponding harvesting efforts of the system
(3) for different kinds of toxicant effort for different combinations α, w1 and w2

are presented in Tables 4, 5, 6 and 7, respectively. The computational work has
been done on a PC with Intel (R) Core (TM) i3-3210 3.20 GHz Processor in
windows environment.

Table 4: Optimal harvesting steady state of prey and predator system (3) for γ1 > γ2
α = 0 α = 0.5 α = 0.9

w1 w2

(
x
1δ̃
, x

2δ̃
, x

3δ̃

)
E

δ̃

(
x
1δ̃
, x

2δ̃
, x

3δ̃

)
E

δ̃

(
x
1δ̃
, x

2δ̃
, x

3δ̃

)
E

δ̃
0.2 0.8 (4.86, 5.29, 2.22) 4.38 (4.80, 5.25, 2.20) 4.39 (4.74, 5.22, 2.18) 4.40

0.4 0.6 (4.77, 5.23, 2.19) 4.39 (4.75, 5.22, 2.18) 4.39 (4.74, 5.21, 2.18) 4.40
0.5 0.5 (4.72, 5.20, 2.18) 4.39 (4.73, 5.21, 2.18) 4.40 (4.73, 5.21, 2.18) 4.40

0.6 0.4 (4.67, 5.17, 2.16) 4.40 (4.71, 5.19, 2.17) 4.40 (4.73, 5.20, 2.18) 4.40

0.8 0.2 (4.58, 5.11, 2.13) 4.41 (4.66, 5.16, 2.16) 4.40 (4.72, 5.20, 2.17) 4.40

Table 5: Optimal harvesting steady state of prey and predator system (3) for γ1 < γ2
α = 0 α = 0.5 α = 0.9

w1 w2

(
x
1δ̃
, x

2δ̃
, x

3δ̃

)
E

δ̃

(
x
1δ̃
, x

2δ̃
, x

3δ̃

)
E

δ̃

(
x
1δ̃
, x

2δ̃
, x

3δ̃

)
E

δ̃
0.2 0.8 (5.29, 5.05, 2.20) 4.38 (5.22, 5.02, 2.18) 4.39 (5.16, 4.99, 2.16) 4.39
0.4 0.6 (5.18, 5, 2.17) 4.39 (5.16, 4.99, 2.16) 4.39 (5.14, 4.98, 2.16) 4.39

0.5 0.5 (5.13, 4.97, 2.15) 4.39 (5.14, 4.96, 2.15) 4.39 (5.14, 4.98, 2.16) 4.39
0.6 0.4 (5.08, 4.95, 2.14) 4.40 (5.11, 4.96, 2.15) 4.40 (5.13, 4.98, 2.16) 4.40

0.8 0.2 (4.97, 4.89, 2.11) 4.41 (5.06, 4.94, 2.13) 4.40 (5.12, 4.97, 2.15) 4.40
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Table 6: Optimal harvesting steady state of prey and predator system (3) for

γ1 = γ2 6= 0
α = 0 α = 0.5 α = 0.9

w1 w2

(
x
1δ̃
, x

2δ̃
, x

3δ̃

)
E

δ̃

(
x
1δ̃
, x

2δ̃
, x

3δ̃

)
E

δ̃

(
x
1δ̃
, x

2δ̃
, x

3δ̃

)
E

δ̃
0.2 0.8 (4.99, 5.13, 2.18) 4.38 (4.92, 5.09, 2.16) 4.38 (5.16, 4.99, 2.16) 4.39

0.4 0.6 (4.89, 5.07, 2.16) 4.39 (4.87, 5.06, 2.15) 4.39 (5.14, 4.98, 2.16) 4.39

0.5 0.5 (4.84, 5.04, 2.14) 4.39 (4.85, 5.05, 2.14) 4.39 (5.14, 4.98, 2.16) 4.39
0.6 0.4 (4.79, 5.02, 2.13) 4.40 (4.82, 5.03, 2.14) 4.39 (5.13, 4.98, 2.16) 4.40

0.8 0.2 (4.69, 4.96, 2.10) 4.40 (4.78, 5, 2.12) 4.40 (5.12, 4.97, 2.15) 4.40

Table 7: Optimal harvesting steady state of prey and predator system (3) for

γ1 = γ2 = 0
α = 0 α = 0.5 α = 0.9

w1 w2

(
x
1δ̃
, x

2δ̃
, x

3δ̃

)
E

δ̃

(
x
1δ̃
, x

2δ̃
, x

3δ̃

)
E

δ̃

(
x
1δ̃
, x

2δ̃
, x

3δ̃

)
E

δ̃
0.2 0.8 (5.38, 5.35, 2.3) 4.39 (5.30, 5.30, 2.28) 4.40 (5.24, 5.27, 2.26) 4.40
0.4 0.6 (5.27, 5.28, 2.27) 4.40 (5.25, 5.27, 2.26) 4.40 (5.23, 5.26, 2.26) 4.41

0.5 0.5 (5.21, 5.25, 2.25) 4.41 (5.22, 5.26, 2.26) 4.41 (5.22, 5.26, 2.26) 4.41

0.6 0.4 (5.16, 5.22, 2.24) 4.41 (5.19, 5.24, 2.25) 4.41 (5.22, 5.26, 2.26) 4.41
0.8 0.2 (5.05, 5.16, 2.21) 4.42 (5.14, 5.21, 2.23) 4.41 (5.21, 5.25, 2.25) 4.41

From Tables 4, 5, 6 and 7, we observe that the feasible optimal equilibrium
exist in all cases for different combinations of α, w1 and w2. It is also observed
that at optimal equilibrium, the population density of the prey and predator
species in the absence of toxicity is always higher than the population density of
the prey and predator species in the presence of toxicity. We also obtain from
the above tables, in any kinds of effect of toxicity for a particular value of α
(say 0, 0.5, 0.9) and increasing values of w1, the optimal level of both prey and
predator species gradually decreases (see Figure 6 to Figure 9) as well as the
optimal efforts employed gradually increases.

Figure 6. Optimal level of prey, predator species vs. w1 for
different values of α with γ1 > γ2
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Figure 7. Optimal level of prey, predator species vs. w1 for
different values of α with γ1 < γ2

Figure 8. Optimal level of prey, predator species vs. w1 for
different values of α with γ1 6= γ2

Figure 9. Optimal level of prey, predator species vs. w1 for
different values of α with γ1 = γ2 = 0

So, we can conclude that the fuzzy net discount rate
(
δ̃
)

plays a significant

role for studying the optimal harvesting policy of our proposed model (3)
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10. Discussion

In this paper, we have developed a three species competition model consisting
of two prey and one predator with the effect of toxic substances and harvesting of
the two prey species. Both the prey species are assumed toxic and release toxic
substances. Release of toxic substances within the surrounding environment by
the first prey species is harmful for the second prey species as well as the predator
species and vice versa. Although the authors unable to identify the specific three
species (two prey and one predator) prey-predator system in which both the prey
species release toxic substances to each other, they considered it to be a very
plausible form of interaction between marine fish species competing for the use
of a common food supply. It seems to be quite unlikely that toxicant releasing
species are limited to the communities of algae and planktons only. Studies on
interacting marine fish species are still inadequate. Several pomacentrid fishes
which feed on benthic algae surely adopt different techniques, biotic as well as
abiotic, to deter other members of their feeding guild.

We have discussed the existence and stability of various equilibrium points
of our proposed system (Theorem 6.1 to Theorem 6.4). We have also anal-
ysed the bionomic equilibrium of the proposed harvesting model. It is observed
that the exploited system may have a stable bionomic equilibrium with positive
population levels for all the species (see Table 3).

The most important part of this paper is to set up an optimal control problem
with fuzzy inflation and discount and the harvesting effort E(t) as the control

variable so as to maximise the fuzzy objective functional J̃ given in (16). Optimal
steady state solution is computed for a data set for different effects of toxicity
(see Table 4 to Table 7).

The important mathematical results for the dynamical behaviour of the toxi-
cant affected three species prey-predator model with harvesting are also numer-
ically verified. The graphical representation of a variety of solutions ( Fig. 1 to
Fig. 5) of system (3) are depicted by using MATLAB software.

There is still some works to do in the proposed model (3) such as we would
consider maturity of both the species to release toxic substances within the
surrounding environment. These modifications make the model more interesting
and realistic. We leave this for future consideration.

Acknowledgments: The authors are grateful to the anonymous referees,
Editor-in-Chief (Prof. Cheon Seong Ryoo) for their careful reading, valuable
comments and helpful suggestions, which have helped to improve the presenta-
tion of this work significantly.

References

1. T.G. Hallam, C.W. Clark, Non-autonomous logistic equations as models of populations in

a deteriorating environment, J. Theor. Biol. 93 (1982), 303-311.



A Mathematical Model of a Prey-Predator Type Fishery in the Presence 35

2. T.G. Hallam, C.W. Clark, G.S. Jordan, Effects of toxicants on populations: a qualitative

approach II. First order kinetics, J. Math. Biol. 18 (1983), 25-37.
3. T.G. Hallam, T.J. De Luna, Effects of toxicants on populations: a qualitative approach

III. Environmental and food chain pathways, J. Theor. Biol. 109 (1984), 411-429.

4. H.I. Freedman, J.B. Shukla, Models for the effect of toxicant in a single-species and
predator-prey systems, J. Math. Biol. 30 (1990), 15-30.

5. J. Chattopadhyay, Effect of toxic substances on a two species competitive system, Ecol.

Model. 84 (1996), 287-289.
6. J.B. Shukla, B. Dubey, Simultaneous effects of two toxicants on biological species: a

mathematical model, J. Biol. Syst. 4 (1996), 109 -130.

7. B. Dubey, J. Hussain, A model for the allelopathic effect on two competing species, Ecol.
Model. 129 (2000), 195-207.

8. S.A. Nelson, The problem of oil pollution of the sea, in: F.S. Russell, M. Yonge (Eds.),
Advances in Marine Biology, Academic Press, London, 1970, 215-306.

9. A.L. Jensen, J.S. Marshall, Application of a surplus production model to assess envi-

ronmental impacts on exploited populations of Daphina pluex in the laboratory, Environ.
Pollut. A 28 (1982), 273-280.

10. J. Maynard Smith, Models in Ecology, Cambridge University Press, 1974, pp. 146.

11. J. Chattopadhyay, R.R. Sarkar, S. Mondal, Toxin-producing phytoplankton may act as a
biological control for planktonic blooms-field study and mathematical modeling, J. Theor.

Biol. 215 (2002), 333-344.

12. M. Bandyopadhyay, T. Saha, R. Pal, Deterministic and stochastic analysis of a delayed
allelopathic phytoplankton model within fluctuating environment, Nonlinear Anal. Hybrid

Syst. 2 (2008), 958-970.

13. S. Abbas, M. Sen, M. Banerjee, Almost periodic solution of a non-autonomous model of
phytoplankton allelopathy, Nonlinear Dyn. 67 (2012), 203-214.

14. D. Pal, G.S. Mahapatra, Effect of toxic substance on delayed competitive allelopathic

phytoplankton system with varying parameters through stability and bifurcation analysis,
Chaos, Solitons and Fractals 87 (2016), 109–124.

15. C.W. Clark, Mathemalical Bioeconomics, The Optimal Management of Renewable Re-
sources. John Wiley & Sons, New York, (1976).

16. G.F. Gause, La Theorie Mathematique de la lutte pour la vie, Hermann, Paris.

17. W. Silvert, W.R. Smith, Optimal exploitation of a multispecies community, Math. Biosci.
33 (1977), 121-134.

18. M. Mesterton-Gibbons, On the optimal policy for the combined harvesting of predator and

prey, Nat.Resour. Model. 3 (1988), 63-90.
19. D.L. Ragozin, G. Brown, Harvest policies and non market valuation in a predator /prey

system, J. Environ. Econ. Manage. 12 (1985), 155-168.

20. D. Pal, G.S. Mahapatra, G.P. Samanta, Optimal harvesting of prey–predator system with
interval biological parameters: a bioeconomic model, Math. Biosci. 241 (2013), 181-187.

21. T.K. Kar, K.S. Chaudhuri, Harvesting in a two-prey one predator fishery: a bioeconomic

model, ANZIAM J. 45 (2004), 443-456.
22. D. Sadhukhan, L.N. Sahoo, B. Mondal, M. Maiti, Food chain model with optimal harvest-

ing in fuzzy environment, J. Appl. Math. Comput. 34 (2010), 1-18.
23. D. Pal, G.S. Mahapatra, A bioeconomic modeling of two-prey and one-predator fishery

model with optimal harvesting policy through hybridization approach, Appl. Math. Com-

put. 242 (2014), 748-763.
24. P.S. Mandal, L.J.S. Allen, M. Banerjee, Stochastic modeling of phytoplankton allelopathy,

Appl. Math. Model. 38 (2014), 1583-1596.

25. D. Pal, G.S. Mahapatra, G.P. Samanta, Stability and bionomic analysis of fuzzy parameter
based prey–predator harvesting model using UFM, Nonlinear Dyn. 79 (2015), 1939-1955.



36 D. Pal, G.S. Mahapatra, S.K. Mahato and G.P. Samanta

26. D. Pal, G.S. Mahapatra, Effect of toxic substance on delayed competitive allelopathic

phytoplankton system with varying parameters through stability and bifurcation analysis,
Chaos, Solitons Fractals 87 (2016), 109-124.

27. K. Maiti, M. Maiti, A numerical approach to a multi-objective optimal control problem

for deteriorating multi-items under fuzzy inflation and discounting, Comput.Math. Appl.
55 (2008), 1794-1807.

28. L.A. Zadeh, Fuzzy sets, Inf. Cont. 8 (1965), 338-353.

29. K.M. Miettinen, Non-Linear Multi-Objective, Optimization, Kluwer’s International Series,
1999.

30. J.D. Murray, Mathematical Biology. Springer-Verlag, New York, 1993.

31. D. Dubois, H. Prade, Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets,
Fuzzy Sets Syst. 192 (2012), 3-24.

32. L.S. Pontryagin, V.G. Boltyonsku, R.V. Gamkrelidre, E.F. Mishchenko, The mathematical
theory of optimal processes, Wiley, New York, 1962.

D. Pal got his M.Sc. and Ph.D. in Applied Mathematics from Indian Institute of En-
gineering Science and Technology, Shibpur in 2005 and 2016 respectively. His areas of

research are Mathematical Ecology and Fuzzy set theory. He has published twenty two

research papers in various international journals.

Chandrahati Dilip Kumar High School (H.S.), Chandrahati 712504, West Bengal, India.

e-mail: pal.debkumar@gmail.com

G.S. Mahapatra got his M.Sc and Ph.D. in Applied Mathematics from Indian Institute of

Engineering Science and Technology, Shibpur. His areas of research are Reliability, Fuzzy

set theory, Intuitionistic Fuzzy set, Bio-Mathematics, Inventory management and Soft
Computing. In last five years he has published more than thirty seven research papers in

various field of mathematics. He is now working as Associate Professor in the Department

of Mathematics, National Institute of Technology Puducherry, Karaikal-609609, India.

Department of Mathematics, National Institute of Technology Puducherry,

Karaikal 609609, India.
e-mail: g s mahapatra@yahoo.com

S.K. Mahato got his M.Sc and Ph.D. in Mathematics from The University of Burdwan.
His areas of research are Reliability, Inventory management, Soft Computing and Math-

ematical Ecology. He has published more than thirty research papers in various reputed

journals. He is currently working as Professor & Head in the Department of Mathematics,
Sidho-Kanho-Birsha University, Purulia W.B., PIN-723104, India.

Department of Mathematics, Sidho-Kanho-Birsha University, Purulia W.B., PIN-723104,
India.
e-mail: sanatkmahato@gmail.com

G.P. Samanta got his M.Sc. and Ph.D. in Applied Mathematics from Calcutta Univer-
sity in 1985 and 1991 respectively. His areas of research are Mathematical Ecology and

Operations Research. He is now working as Professor in the Department of Mathematics,

Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India.

Department of Mathematics, Indian Institute of Engineering Science and Technology,

Shibpur, Howrah-711103, India.
e-mail: g p samanta@yahoo.co.uk


