• 제목/요약/키워드: Harmonic compensation method

검색결과 135건 처리시간 0.025초

디지털 록인 앰프를 이용한 비정현 계통 전압 하에서 강인한 단상계통 연계 인 버터용 고조파 보상법 (A Robust Harmonic Compensation Technique using Digital Lock-in Amplifier under the Non-Sinusoidal Grid Voltage Conditions for the Single Phase Grid Connected Inverters)

  • 칸 아마드 레이안;아쉬라프 모하마드 노만;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.95-97
    • /
    • 2018
  • The power quality of Single Phase Grid-Connected Inverters (GCIs) has received much attention with the increasing number of Distributed Generation (DG) systems. However, the performance of single phase GCIs get degraded due to several factors such as the grid voltage harmonics, the dead time effect, and the turn ON/OFF of the switches, which causes the harmonics at the output of GCIs. Therefore, it is not easy to satisfy the harmonic standards such as IEEE 519 and P1547 without the help of harmonic compensator. To meet the harmonic standards a certain kind of harmonic controller needs to be added to the current control loop to effectively mitigate the low order harmonics. In this paper, the harmonic compensation is performed using a novel robust harmonic compensation method based on Digital Lock-in Amplifier (DLA). In the proposed technique, DLAs are used to extract the amplitude and phase information of the harmonics from the output current and compensate it by using a simple PI controller in the feedforward manner. In order to show the superior performance of the proposed harmonic compensation technique, it is compared with those of conventional harmonic compensation methods in terms of the effectiveness of harmonic elimination, complexity, and implementation. The validity of the proposed harmonic compensation techniques for the single phase GCIs is verified through the experimental results with a 5kW single phase GCI. Index Terms -Single Phase Grid Connected Inverter (SPGCI), Harmonic Compensation Method, Total Harmonic Distortion (THD) and Harmonic Standard.

  • PDF

인버터 연계형 분산전원을 이용한 배전계통 고조파 전류 보상원리 (Harmonic Current Compensation Method Using Inverter-Interfaced Distributed Generators)

  • 정일엽;강현구
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.279-284
    • /
    • 2011
  • Harmonic distortions in current waveform may cause significant problems in electric power system facility and operation. This paper presents an adaptive parameter estimation method to detect harmonic current components caused by nonlinear loads. In addition, a coordination strategy for multiple inverter-interfaced distributed generators to compensate the harmonic currents is discussed. The coordination strategy is realized by distributing the harmonic compensation participation index to individual distributed generators. The harmonic compensation participation index can be determined by the amount of remaining power generation capacity of each distributed generator. Simulation results based on switching-level inverter models show that the proposed harmonic detection method has good performance and the coordination strategy can improve harmonic problems efficiently.

Intelligent Coordination Method of Multiple Distributed Resources for Harmonic Current Compensation in a Microgrid

  • Kang, Hyun-Koo;Yoo, Choel-Hee;Chung, Il-Yop;Won, Dong-Jun;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.834-844
    • /
    • 2012
  • Nonlinear electronic loads draw harmonic currents from the power grids that can cause energy loss, miss-operation of power equipment, and other serious problems in the power grids. This paper proposes a harmonic compensation method using multiple distributed resources (DRs) such as small distributed generators (DGs) and battery energy storage systems (BESSs) that are integrated to the power grids through power inverters. For harmonic compensation, DRs should inject additional apparent power to the grids so that certain DRs, especially operated in proximity to their rated power, may possibly reach their maximum current limits. Therefore, intelligent coordination methods of multiple DRs are required for efficient harmonic current compensation considering the power margins of DRs, energy cost, and the battery state-of-charge. The proposed method is based on fuzzy multi-objective optimization so that DRs can cooperate with other DRs to eliminate harmonic currents with optimizing mutually conflicting multi-objectives.

3상 3선식 전력계통의 고조파 저감을 위한 새로운 직렬형 능동 필터 시스템 (New series Active power filtering system to reduce the harmonic in 3-Phase 3-Wire system)

  • 한윤석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.119-122
    • /
    • 2000
  • This paper presents a new compensation method of series active power filter. The proposed method applied in the three-phase three-wire system can generate harmonic compensation voltage in front of the harmonic source. Futhermore it is also expended to three-phase four-wire system considering zero-sequence voltage. The compensation principle is described in detail. Experimental result show the validity of the proposed method in the three-phase three-wire system

  • PDF

단상 계통연계 인버터를 위한 새로운 고조파 보상법 (A Novel Harmonic Compensation Method for the Single Phase Grid Connected Inverters)

  • 칸 아마드 레이안;아쉬라프 모하마드 노만;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.144-146
    • /
    • 2018
  • In order to meet the harmonics standards such as IEEE 519 and P1547 the output quality of a grid connected inverter should satisfy a certain level of Total Harmonic Distortion (THD) value. However, the output quality of an inverter gets degraded due to the grid voltage harmonics, the dead time effects and the nonlinearity of the switches, which all contributes to a higher THD value of the output. In order to meet the required THD value for the inverter output under the distorted grid condition the use of harmonic controller is essential. In this paper a novel feedforward harmonic compensation method is proposed in order to effectively eliminate the low order harmonics in the inverter current to the grid. In the proposed method, unlike the conventional harmonic control methods, the hamonic components are directly compensated by the feedforward terms generated by the PR controller with the grid current in the stationary frame. The proposed method is simple in implementation but powerful in eliminating the harmonics from the output. The effectiveness of proposed method is verified through the PSIM simulation and the experiments with a 5kW single phase grid connected inverter.

  • PDF

단상 계통연계 인버터를 위한 개선된 고조파 보상법 (An Improved Harmonic Compensation Method for a Single-Phase Grid Connected Inverter)

  • 칸 레이안;최우진
    • 전력전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.215-227
    • /
    • 2019
  • Grid-connected inverters should satisfy a certain level of total harmonic distortion (THD) to meet harmonics standards, such as IEEE 519 and P1547. The output quality of an inverter is typically degraded due to grid voltage harmonics, dead time effects, and the device's turn-on/turn-off delay, which all contribute to increasing the THD value of the output. The use of a harmonic controller is essential to meet the required THD value for inverter output under a distorted grid condition. In this study, an improved feedforward harmonic compensation method is proposed to effectively eliminate low-order harmonics in the inverter current to the grid. In the proposed method, harmonic components are directly compensated through feedforward terms generated by the proportional resonant controller with the grid current in a stationary frame. The proposed method is simple to implement but powerful in eliminating harmonics from the output. The effectiveness of the proposed method is verified through simulation using PSIM software and experiments with a 5 kW single-phase grid-connected inverter.

영상분 3고조파 전압을 이용한 속도센서없는 유도전동기 벡터제어 시스템의 파라미터 변동 보상 (A Compensation Method of Parameter Variations for the Speed-Sensorless Vector Control System of Induction Motors using Zero Sequence Third Harmonic Voltages)

  • 최정수;김진수;김영석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권2호
    • /
    • pp.75-82
    • /
    • 1999
  • A compensation method of the motor parameters using zero sequence third harmonic voltage is presented for the speed sensorless vector control of the induction motor considering saturation of the flux. Generally, the air-gap flux of the saturated induction motor contains the space harmonic components rotating with the synchronous frequency of the motor. Because the EMF of the saturated induction motor contains the zero sequence harmonic voltages at the neutral point of the motor, those harmonic voltages can be used as a saturation index. In this work, the rotor flux observer is firstly designed for the speed sensorless vector control of induction motor. And a novel measurement method of the space harmonic voltage and a compensation method of th LPF(Low Pass Filter) are proposed. For compensating the non-linear variations of the magnetizing inductance depending on the saturation level of the motor, the dominant third harmonic voltage of the motor is used as a saturation function of the air-gap flux. And the variation of the stator resistance owing to the motor temperature can also be measured with the phase angle between the impressed voltage vector and the zero sequence voltage. The validity of the proposed parameter compensation scheme in the speed sensorless vector control using rotor flux observer is verified by the result of the simulations and the experiments.

  • PDF

3상 계통 연계형 인버터에서의 전류 고조파 감쇄를 위한 능동형 피드포워드 보상 기법 (An Active Feedforward Compensation for a Current Harmonics Reduction in Three-phase Grid-connected Inverters)

  • 박병준;김래영;최기영
    • 전력전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-7
    • /
    • 2014
  • This paper proposes a current harmonic compensation method for the grid-connected inverter, especially caused by the grid impedance. Grid impedance causes low order harmonics in the grid current and deteriorates power quality. This paper analyzes the negative impact of the grid impedance, and proposes an active feedforward compensation method. Proposing method verified through simulation and experiment with 3-phase 1.5kW voltage source inverter prototype.

A 2nd Order Harmonic Compensation Method for Wind Power System Using a PR Controller

  • Jeong, Hae-Gwang;Lee, Jong-Hyun;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.507-515
    • /
    • 2013
  • This paper proposes a compensation method for the $2^{nd}$-order harmonic of single-phase grid-connected wind power generation systems. Theoretically, a single-phase grid-connected inverter system has no choice but to cause the $2^{nd}$-order harmonic to DC-link voltage. The reference active current is affected by the DC-link voltage. The output current from the reference active current is distorted by the $1^{st}$ and $3^{rd}$-order harmonic. The proposed method can compensate, conveniently, the reference active current with the $2^{nd}$-order harmonic. To reduce the $2^{nd}$-order ripple in the reference active current, proposed method takes a PR controller as a feed-forward compensator. PR controllers can implement selective harmonic compensation without excessive computational requirements; the use of these controllers simplifies the method. Both the simulation and experimental results agree well with the theoretical analysis.

전류 고조파와 불평형 전원 전압 보상을 위한 직렬형 능동전력필터에 관한 연구 (A Study on the Series Active Power Filter for Harmonic Reduction and Unbalanced Source Voltage Compensation)

  • 오재훈;한윤석;김영석;원충연;최세완
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.191-194
    • /
    • 2001
  • In this paper, we propose a series active power filter control method to compensate current harmonics and unbalanced source voltage. The system is composed of series active power filter and shunt passive filer that are tuned 5th and 7th harmonics. In this conventional system, series active power filter complements drawbacks of the shunt passive filter, namely improves harmonic compensation characteristics, and compensates unbalanced source voltage. In the proposed algorithm, compensation voltage for harmonic reduction is calculated by performance function, and compensation voltage for unbalanced source voltage is calculated in based on a synchronous reference frame. So, ultimate compensation voltage is sum of those two compensation voltages. By computer simulation, we verify the excellency of proposed method.

  • PDF